

aurecon

Ouruhia Domain Toilets

Qualitative Engineering Evaluation

Functional Location ID: PRK 0391 BLDG 001 EQ2

Address: 735 Marshland Road

Reference: 229177

Prepared for:

Christchurch City Council

Revision: 2

Date: 22 November 2012

Document Control Record

Document prepared by:

Aurecon New Zealand Limited Unit 1, 150 Cavendish Road Casebrook Christchurch 8051 PO Box 1061 Christchurch 8140 New Zealand

T +64 3 375 0761 F +64 3 379 6955

Ε christchurch@aurecongroup.com

aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
 Using the documents or data for any purpose not agreed to in writing by Aurecon.

Document control				i	aurecon			
Report Title		Qualitative Engineering Evaluation						
Functional Location ID		PRK 0391 BLDG 001 EQ2	Project Numb	per	229177			
File Path		P:\ 229177 - Ouruhia Domain Toilets.docx						
Client		Christchurch City Council	Client Contact		Michael Sheffield			
Rev	Date	Revision Details/Status	Prepared	Author	Verifier	Approver		
1	1 August 2012	Draft	C. Bong	C. Bong	L. Castillo	L. Castillo		
2	22 November 2012	Final	C. Bong	C. Bong	L. Castillo	L. Castillo		
Curre	nt Revision	2						

Approval						
Author Signature	Jan 1991	Approver Signature				
Name	Christopher Bong	Name	Luis Castillo			
Title	Structural Engineer	Title	Senior Structural Engineer			

Contents

Ex	ecutiv	e Summary	1
1	Intro	duction	2
	1.1	General	2
2	Desc	cription of the Building	2
	2.1	Building Age and Configuration	2
	2.2	Building Structural Systems Vertical and Horizontal	2
	2.3	Reference Building Type	3
	2.4	Building Foundation System and Soil Conditions	4
	2.5	Available Structural Documentation and Inspection Priorities	4
	2.6	Available Survey Information	4
3	Stru	ctural Investigation	4
	3.1	Summary of Building Damage	4
	3.2	Record of Intrusive Investigation	4
	3.3	Damage Discussion	4
4	Buile	ding Review Summary	5
	4.1	Building Review Statement	5
	4.2	Critical Structural Weaknesses	5
5	Buile	ding Strength (Refer to Appendix C for background information)	5
	5.1	General	5
	5.2	Initial %NBS Assessment	5
	5.3	Results Discussion	6
6	Con	clusions and Recommendations	6
7	Expl	anatory Statement	7

Appendices

Appendix A Site Map and Photos

Appendix B References

Appendix C Strength Assessment Explanation

Appendix D Background and Legal Framework

Appendix E Standard Reporting Spread Sheet

Executive Summary

This is a summary of the Qualitative Engineering Evaluation for the Ouruhia Domain Toilets building and is based on the Detailed Engineering Evaluation Procedure document issued by the Engineering Advisory Group on 19 July 2011, visual inspections, available structural documentation and summary calculations as appropriate.

Building Details	Name	Ouruhia Dom	nain T	oilets			
Building Location ID	PRK 0391	BLDG 001 EQ2 Multiple Building Site			e Building Site	N	
Building Address	735 Marsh	and Road (access off	Chenery	Ave)	No. of I	residential units	0
Soil Technical Category	NA	Importance Level		2	Approx	imate Year Built	1989
Foot Print (m²)	23	Storeys above gro	und	1	Storeys	s below ground	0
Type of Construction	Struction Light weight roof, timber purlins and rafters, concrete masonry walls, strip footings beneath the concrete masonry walls and slab on grade foundations.						
Qualitative L4 Repor	rt Results	Summary					
Building Occupied	Y	The Ouruhia Domain Toilets is currently in service.					
Suitable for Continued Occupancy	Y	The Ouruhia Domai	The Ouruhia Domain Toilets is suitable for continued use.				
Key Damage Summary	Y	Refer to summary of building damage Section 3.1 report body.					
Critical Structural Weaknesses (CSW)	N	No critical structural weaknesses were identified.					
Levels Survey Results	N	Given the low levels of damage noted in the damage assessment, a levels survey is considered unnecessary.					
Building %NBS From Analysis	>100%	Based on an analys	is of brac	ing capacity	and dem	and.	
Qualitative L4 Repor	rt Recom	mendations					
Geotechnical Survey Required	N	Geotechnical survey	y not requ	ired due to l	ack of ob	served ground damag	je on site.
Proceed to L5 Quantitative DEE	N	A quantitative DEE	is not req	uired for this	structure).	
Approval							
Author Signature		red of the second		Approver Si	gnature		
Name	Christophe	r Bong			Name	Luis Castillo	
Title	Structural E	Engineer			Title	Senior Structural En	gineer

1 Introduction

1.1 General

On 25 May 2012 Aurecon engineers visited the Ouruhia Domain Toilets to undertake a qualitative building damage assessment on behalf of Christchurch City Council. Detailed visual inspections were carried out to assess the damage caused by the earthquakes on 4 September 2010, 22 February 2011, 13 June 2011, 23 December 2011 and related aftershocks.

The scope of work included:

- Assessment of the nature and extent of the building damage.
- Visual assessment of the building strength particularly with respect to safety of occupants if the building is currently occupied.
- Assessment of requirements for detailed engineering evaluation including geotechnical investigation, level survey and any areas where linings and floor coverings need removal to expose structural damage.

This report outlines the results of our Qualitative Assessment of damage to the Ouruhia Domain Toilets and is based on the Detailed Engineering Evaluation Procedure document issued by the Structural Advisory Group on 19 July 2011, visual inspections, available structural documentation and summary calculations as appropriate.

2 Description of the Building

2.1 Building Age and Configuration

The Ouruhia Domain Toilets is single storey toilet block constructed in 1989. The building is of concrete masonry wall construction. The building has a light weight timber roof, clad in colour steel, a concrete floor and concrete strip footings below the concrete masonry walls.

The building has an approximate floor area of 23 square metres. It is considered as an importance level 1 structure in accordance with AS/NZS 1170 Part 0:2002.

2.2 Building Structural Systems Vertical and Horizontal

The Ouruhia Domain Toilets are of concrete masonry construction. The gravity loads from the timber framed roof are transferred into the ground via the concrete masonry walls and strip footings. The loads from the ground floor are resisted by the concrete floor slab which is founded on a layer of rounded shingle hard fill.

The lateral load resisting similar is identical to the gravity system in which the lateral loads in both principal directions are resisted by the concrete masonry walls.

2.3 Reference Building Type

The Ouruhia Domain Toilets are of concrete masonry construction typical of the 1980s and 1990s. Although there were no notes in the structural drawings indicating whether the walls are either fully or partially filled, it is assumed that given the lack of horizontal reinforcing bars in the wall drawings that the walls are partially filled.

A general overview of the reference building type, construction era and likely earthquake risk is presented in the figure below. The Ouruhia Domain Toilets is a lightly reinforced partially filled concrete masonry building constructed in the 1989 and according to the figure below is "possibly earthquake prone".

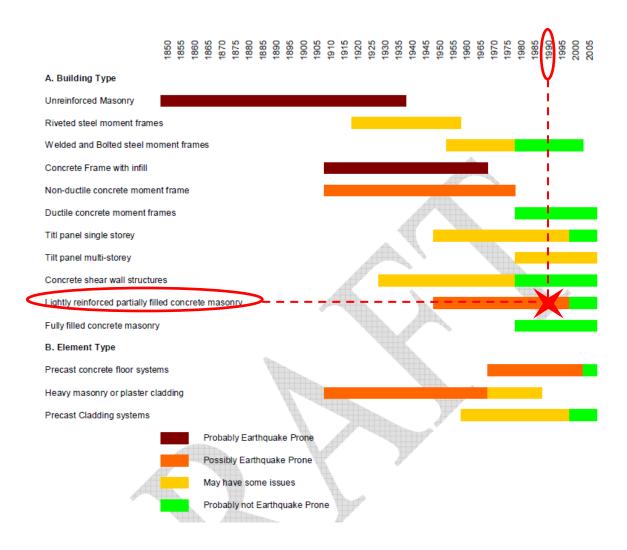


Figure 1: Timeline showing the building types, approximate time of construction and likely earthquake risk. (From the Draft Guidance on DEEs of non-residential buildings by the Engineering Advisory Group)

Given the stiff nature of concrete masonry walls, buildings of this nature are particularly prone to plan irregularities. Plan irregularities introduce localised areas of high seismic demand and torsional instabilities, causing local and global failure of the structure. However, as toilet blocks typically lack significant door, window or service openings, the Ouruhia Domain Toilets is precluded from the aforementioned issues.

2.4 Building Foundation System and Soil Conditions

The Ouruhia domain is used for non-residential recreational purposes, the Department of Building and Housing (DBH) do not currently have a technical classification for the land in the immediate vicinity of the Ouruhia Domain Toilets. It is of note however, that the closest suburb of Belfast 1 kilometre to the south west consists primarily of Technical Category 2 (TC 2) land. According to CERA, TC2 land is considered to "incur minor to moderate land damage from liquefaction".

2.5 Available Structural Documentation and Inspection Priorities

The only drawings available for the Ouruhia Domain Toilets were the structural drawing set prepared by Works Consultancy Services dated October 1989 for the Waimairi District Council.

The inspection priorities for the building are the review of damage to the mortar joints which are inherently weaker than the concrete masonry blocks. Additionally, the damage assessment focused on the building geometry and other forms of potential damage such as cracking in the concrete masonry block and concrete floor.

2.6 Available Survey Information

Given the lack of damage noted to the structure and no signs of ponding, it is considered that the floors were within acceptable limits. As such a levels survey was not undertaken on the concrete floor of the building.

3 Structural Investigation

3.1 Summary of Building Damage

There was no damage noted in the damage assessment.

3.2 Record of Intrusive Investigation

There was no noted damage to the building and therefore, an intrusive investigation was neither warranted nor undertaken for Ouruhia Domain Toilets.

3.3 Damage Discussion

No seismic related damage was noted in the damage assessment. This is not surprising given that the building has several long spans of well-distributed walls in both principal directions; thus distributing the seismic shear forces over a large cross-sectional area.

4 Building Review Summary

4.1 Building Review Statement

As noted above no intrusive investigations were carried out for the Ouruhia Domain Toilets. Because of the generic nature of the building a significant amount of information can be inferred from an external and internal inspection.

4.2 Critical Structural Weaknesses

No specific critical structural weaknesses were identified as part of the building qualitative assessment.

5 Building Strength (Refer to Appendix C for background information)

5.1 General

The Ouruhia Domain Toilets is of lightly reinforced partially filled concrete masonry construction. With well distributed walls and good detailing, the building has performed well in the Canterbury earthquake sequence as evidenced by the lack of noted damage in section 3 above.

5.2 Initial %NBS Assessment

The Ouruhia Domain Toilets has not been subject to specific engineering design and the initial evaluation procedure or IEP is not an appropriate method of assessment for this building. Nevertheless an estimate of lateral load capacity can be made by adopting assumed values for strengths of existing materials and calculating the capacity of existing walls.

Selected assessment seismic parameters are tabulated in the tables below.

Table 1: Parameters used in the Seismic Assessment

Seismic Parameter	Quantity	Comment/Reference
Site Soil Class	D	NZS 1170.5:2004, Clause 3.1.3, Deep or Soft Soil
Site Hazard Factor, Z	0.30	DBH Info Sheet on Seismicity Changes (Effective 19 May 2011)
Return period Factor, R _u	0.50	NZS 1170.5:2004, Table 3.5, Importance Level 1 Structure with a Design Life of 50 years
Ductility Factor in the Along Direction, μ	1.25	Lightly reinforced, partially filled concrete masonry walls
Ductility Factor in the Across Direction, μ	1.25	Lightly reinforced, partially filled concrete masonry walls

The seismic demand for the Ouruhia Domain Toilets has been calculated based on the current code requirements of NZS 4229:1999 (Concrete Masonry Buildings Not Requiring Specific Engineering Design). The capacity of the existing walls in the building was calculated from assumed strengths of existing materials and the number and length of walls present for both the along and across directions. The seismic demand was then compared with the building capacity in these directions. The building was found to have a sufficient number and length of walls in both the along and across directions to achieve a capacity in excess of 100% NBS.

5.3 Results Discussion

The bracing check is in agreement with the observations of the damage assessment. This is not surprising given that the building has an even distribution of long walls that allow the seismic shear forces to be spread over a large wall area; giving the building good seismic performance and torsional stability.

6 Conclusions and Recommendations

Given the good performance of the Ouruhia Domain Toilets in the Canterbury earthquake sequence, the lack of foundation damage and the floor levels considered to be within acceptable limits, **a geotechnical investigation is currently not considered necessary**.

Additionally, the building has suffered no loss of functionality and in our opinion the Ouruhia Domain Toilets is considered suitable for continued occupation.

7 Explanatory Statement

The inspections of the building discussed in this report have been undertaken to assess structural earthquake damage. No analysis has been undertaken to assess the strength of the building or to determine whether or not it complies with the relevant building codes, except to the extent that Aurecon expressly indicates otherwise in the report. Aurecon has not made any assessment of structural stability or building safety in connection with future aftershocks or earthquakes – which have the potential to damage the building and to jeopardise the safety of those either inside or adjacent to the building, except to the extent that Aurecon expressly indicates otherwise in the report.

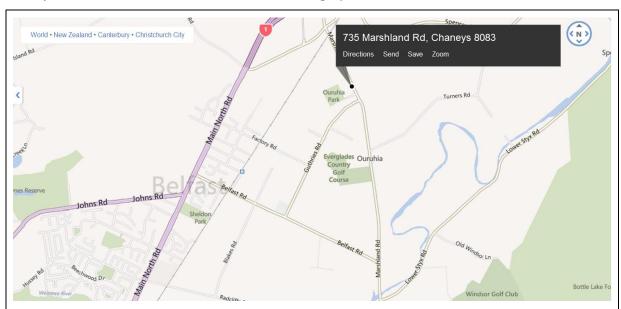
This report is necessarily limited by the restricted ability to carry out inspections due to potential structural instabilities/safety considerations, and the time available to carry out such inspections. The report does not address defects that are not reasonably discoverable on visual inspection, including defects in inaccessible places and latent defects. Where site inspections were made, they were restricted to external inspections and, where practicable, limited internal visual inspections.

To carry out the structural review, existing building drawings were obtained from the Christchurch City Council records. We have assumed that the building has been constructed in accordance with the drawings.

While this report may assist the client in assessing whether the building should be repaired, strengthened, or replaced that decision is the sole responsibility of the client.

This review has been prepared by Aurecon at the request of its client and is exclusively for the client's use. It is not possible to make a proper assessment of this review without a clear understanding of the terms of engagement under which it has been prepared, including the scope of the instructions and directions given to and the assumptions made by Aurecon. The report will not address issues which would need to be considered for another party if that party's particular circumstances, requirements and experience were known and, further, may make assumptions about matters of which a third party is not aware. No responsibility or liability to any third party is accepted for any loss or damage whatsoever arising out of the use of or reliance on this report by any third party.

Without limiting any of the above, Aurecon's liability, whether under the law of contract, tort, statute, equity or otherwise, is limited as set out in the terms of the engagement with the client.


Appendices

Appendix A

Site Map and Photos

25 May 2012 - Ouruhia Domain Toilets Site Photographs

End elevation of the Ouruhia Domain Toilets.

Rear elevation of the Ouruhia Domain Toilets.

aurecon

Oblique view of the Ouruhia Domain Toilets.

Internal view of the timber framed roof consisting of a ridge beam and rafters.

Interior view of the Ouruhia Domain Toilets.

Appendix B

References

- Department of Building and Housing (DBH), "Revised Guidance on Repairing and Rebuilding Houses Affected by the Canterbury Earthquake Sequence", November 2011
- 2. New Zealand Society for Earthquake Engineering (NZSEE), "Assessment and Improvement of the Structural Performance of Buildings in Earthquakes", April 2012
- 3. Standards New Zealand, "AS/NZS 1170 Part 0, Structural Design Actions: General Principles", 2002
- 4. Standards New Zealand, "AS/NZS 1170 Part 1, Structural Design Actions: Permanent, imposed and other actions", 2002
- 5. Standards New Zealand, "NZS 1170 Part 5, Structural Design Actions: Earthquake Actions New Zealand", 2004
- 6. Standards New Zealand, "NZS 3101 Part 1, The Design of Concrete Structures", 2006
- 7. Standards New Zealand, "NZS 3404 Part 1, Steel Structures Standard", 1997
- 8. Standards New Zealand, "NZS 3606, Timber Structures Standard", 1993
- 9. Standards New Zealand, "NZS 3604, Timber Framed Structures", 2011
- 10. Standards New Zealand, "NZS 4229, Concrete Masonry Buildings Not Requiring Specific Engineering Design", 1999
- 11. Standards New Zealand, "NZS 4230, Design of Reinforced Concrete Masonry Structures", 2004

Appendix C

Strength Assessment Explanation

New building standard (NBS)

New building standard (NBS) is the term used with reference to the earthquake standard that would apply to a new building of similar type and use if the building was designed to meet the latest design Codes of Practice. If the strength of a building is less than this level, then its strength is expressed as a percentage of NBS.

Earthquake Prone Buildings

A building can be considered to be earthquake prone if its strength is less than one third of the strength to which an equivalent new building would be designed, that is, less than 33%NBS (as defined by the New Zealand Building Act). If the building strength exceeds 33%NBS but is less than 67%NBS the building is considered at risk.

Christchurch City Council Earthquake Prone Building Policy 2010

The Christchurch City Council (CCC) already had in place an Earthquake Prone Building Policy (EPB Policy) requiring all earthquake-prone buildings to be strengthened within a timeframe varying from 15 to 30 years. The level to which the buildings were required to be strengthened was 33%NBS.

As a result of the 4 September 2010 Canterbury earthquake the CCC raised the level that a building was required to be strengthened to from 33% to 67% NBS but qualified this as a target level and noted that the actual strengthening level for each building will be determined in conjunction with the owners on a building-by-building basis. Factors that will be taken into account by the Council in determining the strengthening level include the cost of strengthening, the use to which the building is put, the level of danger posed by the building, and the extent of damage and repair involved.

Irrespective of strengthening level, the threshold level that triggers a requirement to strengthen is 33%NBS.

As part of any building consent application fire and disabled access provisions will need to be assessed.

Christchurch Seismicity

aurecon

The level of seismicity within the current New Zealand loading code (AS/NZS 1170) is related to the seismic zone factor. The zone factor varies depending on the location of the building within NZ. Prior to the 22nd February 2011 earthquake the zone factor for Christchurch was 0.22. Following the earthquake the seismic zone factor (level of seismicity) in the Christchurch and surrounding areas has been increased to 0.3. This is a 36% increase.

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The new building standard load requirements have been determined in accordance with the current earthquake loading standard (NZS 1170.5:2004 Structural design actions - Earthquake actions - New Zealand).

The likely capacity of this building has been derived in accordance with the New Zealand Society for Earthquake Engineering (NZSEE) guidelines 'Assessment and Improvement of the Structural Performance of Buildings in Earthquakes' (AISPBE), 2006. These guidelines provide an Initial Evaluation Procedure that assesses a buildings capacity based on a comparison of loading codes from when the building was designed

and currently. It is a quick high-level procedure that can be used when undertaking a Qualitative analysis of a building. The guidelines also provide guidance on calculating a modified Ultimate Limit State capacity of the building which is much more accurate and can be used when undertaking a Quantitative analysis.

The New Zealand Society for Earthquake Engineering has proposed a way for classifying earthquake risk for existing buildings in terms of %NBS and this is shown in Figure C1 below.

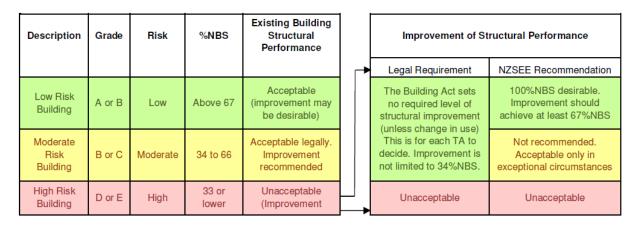


Figure C1: NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE Guidelines

Table C1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% probability of exceedance in 50 years (i.e. 0.2% in the next year). It is noted that the current seismic risk in Christchurch results in a 6% probability of exceedance in the next year.

Table C1: Relative Risk of Building Failure In A

Percentage of New Building Standard (%NBS)	Relative Risk (Approximate)
>100	<1 time
80-100	1-2 times
67-80	2-5 times
33-67	5-10 times
20-33	10-25 times
<20	>25 times

Appendix D

Background and Legal Framework

Background

Aurecon has been engaged by the Christchurch City Council (CCC) to undertake a detailed engineering evaluation of the building

This report is a Qualitative Assessment of the building structure, and is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011.

A qualitative assessment involves inspections of the building and a desktop review of existing structural and geotechnical information, including existing drawings and calculations, if available.

The purpose of the assessment is to determine the likely building performance and damage patterns, to identify any potential critical structural weaknesses or collapse hazards, and to make an initial assessment of the likely building strength in terms of percentage of new building standard (%NBS).

At the time of this report, no intrusive site investigation, detailed analysis, or modelling of the building structure had been carried out. Construction drawings were made available, and these have been considered in our evaluation of the building. The building description below is based on a review of the drawings and our visual inspections.

Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 - Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 - Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee carry out a full structural survey before the building is re-occupied.

We understand that CERA will require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). It is anticipated that CERA will adopt the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. This document sets out a methodology for both qualitative and quantitative assessments.

The qualitative assessment is a desk-top and site inspection assessment. It is based on a thorough visual inspection of the building coupled with a review of available documentation such as drawings and specifications. The quantitative assessment involves analytical calculation of the buildings strength and may require non-destructive or destructive material testing, geotechnical testing and intrusive investigation.

It is anticipated that factors determining the extent of evaluation and strengthening level required will include:

- The importance level and occupancy of the building
- The placard status and amount of damage
- The age and structural type of the building
- Consideration of any critical structural weaknesses
- The extent of any earthquake damage

Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to any alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 - Change of Use

This section requires that the territorial authority (in this case Christchurch City Council (CCC)) be satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'. Regarding seismic capacity 'as near as reasonably practicable' has previously been interpreted by CCC as achieving a minimum of 67%NBS however where practical achieving 100%NBS is desirable. The New Zealand Society for Earthquake Engineering (NZSEE) recommend a minimum of 67%NBS.

Section 121 - Dangerous Buildings

The definition of dangerous building in the Act was extended by the Canterbury Earthquake (Building Act) Order 2010, and it now defines a building as dangerous if:

- in the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- in the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- there is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- there is a risk that that other property could collapse or otherwise cause injury or death; or
- a territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 - Earthquake Prone Buildings

This section defines a building as earthquake prone if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property. A

moderate earthquake is defined by the building regulations as one that would generate ground shaking 33% of the shaking used to design an equivalent new building.

Section 124 - Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 - Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake of the 4th September 2010.

The 2010 amendment includes the following:

- A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;
- A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

We anticipate that any building with a capacity of less than 33%NBS (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67%NBS of new building standard as recommended by the Policy.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

Building Code

The building code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

After the February Earthquake, on 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- Hazard Factor increased from 0.22 to 0.3 (36% increase in the basic seismic design load)
- Serviceability Return Period Factor increased from 0.25 to 0.33 (80% increase in the serviceability design loads when combined with the Hazard Factor increase)

The increase in the above factors has resulted in a reduction in the level of compliance of an existing building relative to a new building despite the capacity of the existing building not changing.

Appendix E Standard Reporting Spread Sheet

Detailed Engineering Evaluation Summary Data V1.11 Location Building Name: Ouruhia Domain Toilets Reviewer: Lee Howard Unit No: Street CPEna No: 1008889 Building Address: 735 Marshland Road Company: Aurecon NZ Ltd Legal Description: Res 4387 Company project number: 229177 Company phone number 03 366 0821 Degrees Min Sec GPS south 26 24.95 39 3.21 Date of submission: Jul-12 GPS east Inspection Date May-12 Revision Building Unique Identifier (CCC) PRK 0391 BLDG 001 EQ2 Is there a full report with this summary? yes Site Site slope: flat Max retaining height (m): Soil type: mixed
Site Class (to NZS1170.5): D Soil Profile (if available) Proximity to waterway (m, if <100m) If Ground improvement on site, describe: Proximity to clifftop (m, if < 100m) Proximity to cliff base (m,if <100m): Approx site elevation (m): 5.00 Building No. of storeys above ground: single storey = 1 Ground floor elevation (Absolute) (m): 5.10 Ground floor split? no Ground floor elevation above ground (m) 0.10 Storeys below ground Foundation type: raft slab if Foundation type is other, describe Building height (m) height from ground to level of uppermost seismic mass (for IEP only) (m): Floor footprint area (approx) Age of Building (years) Date of design: 1976-1992 Strengthening present? no If so, when (year)? And what load level (%g)? Use (ground floor): public Brief strengthening description: Use (upper floors) Use notes (if required): toilets Importance level (to NZS1170.5): IL2 Gravity Structure Gravity System: load bearing walls timber purlins and rafters, colour steel timber framed rafter type, purlin type and cladding roof Roof: Floors slab thickness (mm concrete flat slab Beams Columns partially filled concrete masonry Walls: thickness (mm 190 Lateral load resisting structure Lateral system along: partially filled CMU Note: Define along and across in Ductility assumed, µ 1.25 note total length of wall at ground (m): detailed report! Period along 0.40 ##### enter height above at H31 estimate or calculation? estimated Total deflection (ULS) (mm) estimate or calculation maximum interstorey deflection (ULS) (mm) estimate or calculation? Lateral system across: partially filled CMU

note total length of wall at ground (m):

1.25

Ductility assumed, u

Period across:		##### enter height above at H31 estimate or cal	
Total deflection (ULS) (mm):		estimate or cal	
maximum interstorey deflection (ULS) (mm)		estimate or cal	lculation?
Separations: north (mm): east (mm): south (mm): west (mm):		leave blank if not relevant	
Non-structural elements Stairs: Wall cladding Roof Cladding Glazing Ceilings Services(list):	Metal		describe 0.4mm dimond colour steel
Available documentation Architectura Structura Mechanica Electrica Geotech report	partial Inone Inone	original designer na original designer na original designer na original designer na original designer na	ame/date lame/date lame/date
Differential settlement Liquefaction Lateral Spread Differential lateral spread	none observed none observed none apparent none apparent none apparent none apparent	Describe notes (if ap	pplicable): pplicable): pplicable): pplicable): pplicable):
Building: Current Placard Status	green		
Along Damage ratio: Describe (summary):		Describe how damage ratio a	arrived at:
Across Damage ration Describe (summary):	0%	$Damage _Ratio = \frac{(\% NBS (before) - \% NBS (after))}{\% NBS (before)}$	
Diaphragms Damage?:	no		Describe:
CSWs: Damage?:	no	[Describe:
Pounding: Damage?:	no	[Describe:
Non-structural: Damage?:	no		Describe:
Recommendations Level of repair/strengthening required Building Consent required Interim occupancy recommendations	no	ם	Describe: Describe: Describe:

Along	Assessed %NBS before e'quakes: 1009 Assessed %NBS after e'quakes: 1009		If IEP not used, please detail Bracing assessment methodology:	check to NZS 4229:1999
cross	Assessed %NBS before e'quakes: 1009 Assessed %NBS after e'quakes: 1009			
)	Use of this method is not mandatory - more detailed	analysis may give a different answer, which wo	uld take precedence. Do not fill in fields i	f not using IEP.
	Period of design of building (from above): 1976-1992		h₁ from above: 3m	
	Seismic Zone, if designed between 1965 and 1992 B	3	not required for this age of building not required for this age of building	
		Period (from above): (%NBS)nom from Fig 3.3:	along 0.4 0.0%	across 0.4 0.0%
	Note:1 for specifically design public buildings, to the code of the		signed between 1976-1984, use 1.2	1.00 1.0 1.0
		Final (%NBS)nom:	along 0%	across 0%
	2.2 Near Fault Scaling Factor		ing factor, from NZS1170.5, cl 3.1.6:	1.00 across
		Near Fault scaling factor (1/N(T,D), Factor A:	1	1
	2.3 Hazard Scaling Factor	Hazard factor	Z for site from AS1170.5, Table 3.3: Z1992, from NZS4203:1992 Hazard scaling factor, Factor B:	0.30 3.333333333
	2.4 Return Period Scaling Factor		Iding Importance level (from above):	2 1.00
		ssessed ductility (less than max in Table 3.2) onwards; or =kµ, if pre-1976, fromTable 3.3:	along 1.25 1.14	across 1.25 1.14
		Ductiity Scaling Factor, Factor D:	1.00	1.00
	2.6 Structural Performance Scaling Factor:	Sp:	0.925	0.925
	Str	uctural Performance Scaling Factor Factor E:	1.081081081	1.081081081
	2.7 Baseline %NBS, (NBS%)b = (%NBS)nom x A x B x C x D x E	%NBSb:	0%	0%
	Global Critical Structural Weaknesses: (refer to NZSEE IEP Table 3.4)			
	3.1. Plan Irregularity, factor A: insignificant	1		
	3.2. Vertical irregularity, Factor B: insignificant	1		

Table for selection of D1

3.3. Short columns, Factor C:

insignificant

Significant

Insignificant/none

Severe

		Separation	0 <sep<.005h< th=""><th>.005<sep<.01h< th=""><th>Sep>.01H</th></sep<.01h<></th></sep<.005h<>	.005 <sep<.01h< th=""><th>Sep>.01H</th></sep<.01h<>	Sep>.01H
3.4. Pounding potential	Pounding effect D1, from Table to right 1.0	Alignment of floors within 20% of H	0.7	0.8	1
	Height Difference effect D2, from Table to right 1.0	Alignment of floors not within 20% of H	0.4	0.7	0.8
	Therefore, Factor D: 1	Table for Selection of D2	Severe	Significant	Insignificant/none
3.5. Site Characteristics	insignificant 1	Separation	0 <sep<.005h< td=""><td>.005<sep<.01h< td=""><td>Sep>.01H</td></sep<.01h<></td></sep<.005h<>	.005 <sep<.01h< td=""><td>Sep>.01H</td></sep<.01h<>	Sep>.01H
0.01 0.10 0.10 1.00 0.10 0.10 0.10 0.10		Height difference > 4 storeys	0.4	0.7	1
		Height difference 2 to 4 storeys	0.7	0.9	1
		Height difference < 2 storeys	1	1	1
			Along		Across
3.6. Other factors, Factor F	For ≤ 3 storeys, max value =2.5, otherwis	se max valule =1.5, no minimum	1.0		1.0
	Rationa	ale for choice of F factor, if not 1			
	nesses: (refer to DEE Procedure section 6) .ist any:Refer also	section 6.3.1 of DEE for discussion of F factor r	modification for other o	critical structural weak	nesses
3.7. Overall Performance Ach	nievement ratio (PAR)		1.00		1.00
4.3 PAR x (%NBS)b:		PAR x Baselline %NBS:	0%		0%

Aurecon New Zealand Limited Unit 1, 150 Cavendish Road Casebrook Christchurch 8051

PO Box 1061 Christchurch 8140 New Zealand

T +64 3 375 0761
F +64 3 379 6955
E christchurch@aurecongroup.com
W aurecongroup.com

Aurecon offices are located in:
Angola, Australia, Botswana, China,
Ethiopia, Hong Kong, Indonesia,
Lesotho, Libya, Malawi, Mozambique,
Namibia, New Zealand, Nigeria,
Philippines, Singapore, South Africa,
Swaziland, Tanzania, Thailand, Uganda,
United Arab Emirates, Vietnam.