

Our Ref: 1605

31 July 2011

Insight Unlimited Ltd P.O Box 1219 GISBORNE 4040

Attention: John Radburn

Dear John,

Re: Mona Vale Homestead – POST-EARTHQUAKE INSPECTION

Scope of this Report

This report covers our assessment of the structural condition of the Mona Vale Homestead building at Fendalton Road, Fendalton, Christchurch, following the magnitude 6.3 earthquakes on 2nd February 2011 and that of the 13 June 2011. Our assessment is based on a visual inspection of the outside and inside where it was deemed to be safe to enter. This was carried out on the 22nd June 2011 and 28th July 2011.

This report describes the damage observed, and comments on remedial work options for both temporary securing of the building, and long term repair where appropriate. This report is preliminary only and does not cover a detailed structural strength assessment or detailed specification of remedial works but does provide some investigation and assumptions that will allow an assessment to be made as to whether to reconstruct or demolish.

1. Scope of Investigation

On the 22nd June 2011 and 28th July 2011, we visually inspected the building including: The exterior from ground level The interior

This report is based on our assessment of the building at the time stated. Photos attached in Appendix A are indicative of the damage. Any subsequent loading by aftershocks, or high winds, may initiate further damage.

2. Building Description

General description:

The Mona Vale Homestead is a two storey gable roof structure consisting of double skin unreinforced brick walls with timber framed floors to the lower level, solid plaster walls on

timber framing with timber framed floors to the upper level, and timber framed roof structure with clay tile roofing. The building is constructed in an "L" shape structural form. The building is shown in the attached plans in appendix C and is approximately 280m2 first floor and 390m2 ground floor.

The building was first constructed 1910.

The building was being used as a Restaurant, but is currently unoccupied due to earthquake damage. The main occupancy classification in NZS1170 is C1 (Restaurants) and B (Communal Kitchens) and importance level of 2. The occupant load is calculated at 170 as classified by the Building Code Clause C table 2.2.

Roof construction:

Clay Tiles on sarking on timber framing.

First Floor External Wall construction:

Solid Plaster walls on timber framed walls with sarking and plaster board over to inside face.

First Floor Internal Wall construction: Light timber framed walls with plaster linings.

First Floor Floor construction:

T&G Flooring on timber floor joists supported on timber beams, timber walls and brick walls.

Ground Floor External Wall construction:

Double skin unreinforced brick walls with sarking and plaster board over to inside face.

Ground Floor Internal Wall construction:

Unreinforced brick walls with sarking and plaster board over plus light timber framed walls with plaster linings.

Ground Floor Floor and Foundation construction:

T&G Flooring on timber floor joists supported on timber bearers on piles, with a concrete perimeter foundation wall (assumed unreinforced).

Structural System:

The gravity structural system can be described as simple beam and post/wall support The structural system can be described as face loaded unreinforced masonry supported at foundation level and ceiling/roof level with nominal diaphragms taking loads back to unreinforced masonry walls acting in-plane. Load then transfers to mass concrete foundations to the ground.

3. Strength

The strength of the building has been determined as a % NBS using methodologies provided by NZSEE.

Before September 2010: The strength of the building before September 2010 is estimated as

Dining Wing First Floor				
Hazard factor 0.22	(pre 19th May 2011)	56% NBS		
Hazard factor 0.3	(post 19th May 2011)	41% NBS		
Ground Floor				
Hazard factor 0.22	(pre 19th May 2011)	45% NBS		
Hazard factor 0.3	(post 19th May 2011)	33% NBS		
Office Wing				
First Floor				
Hazard factor 0.22	(pre 19th May 2011)	65% NBS		
Hazard factor 0.3	(post 19th May 2011)	88% NBS		
Ground Floor				
Hazard factor 0.22	(pre 19th May 2011)	57% NBS (gov	verned k	by face loading on brick walls)
Hazard factor 0.3	(post 19th May 2011)	42% NBS (gov	verned k	by face loading on brick walls)
On day of inspect	ion [.]			
The strength of the	building on the day of in	spection is es	timate	d as
nie strongtr er tre				
Dining Wing				
First Floor				
Hazard factor 0.3 (post 19th May 2011)	35% N	BS	(estimated only)
Ground Floor	. , ,			
Hazard factor 0.3 (post 19th May 2011)	5% NB	S	(estimated only)

Office Wing First Floor Hazard factor 0.3 (post 19th May 2011) 50% NBS (estimated only) Ground Floor Hazard factor 0.3 (post 19th May 2011) 35% NBS (estimated only)

It must be understood that this strength is based on the overall building strength and not individual elements. It is clear that some individual elements in fact have an even lower strength due to local cracking etc and as low as 0% in places. Furthermore this estimate is based on the fact that there is now significant cracking and lose of adhesion between bricks thus making the structure vulnerable as was shown on the north west wall of the dining wing with the continual collapse of the wall veneer and structural wall.

3. Damage Description

Damage caused by the February earthquake to the Mona Vale Homestead is described below. Damage described is that observed on the day and indicated on the L2 reports. Refer to Appendix B for marked-up drawings and sketches from the L2 reports indicating damaged locations.

i. General Damage to Exterior Walls:

General damage includes cracking of masonry walls, foundations and columns.

ii. Damage to Dining Wing:

This Section has suffered severe cracking to the brick walls both in the veneer and structural elements. The northwest wall veneer has partially collapsed and the structural wall has bricks dislodging. This section of wall is at high risk of collapse. The stair outer wall has partially collapsed.

The other walls have diagonal cracking with widths of up to 10mm to 20mm in places.

Bricks have become dislodged in some arch areas.

Ceilings have large cracks and are significantly damaged.

iii. Damage to Office Wing:

The brick walls have general cracking only with plaster walls also suffering general damage. Ceilings have general cracking.

iv. Damage to Internal Walls:

There is severe cracking to all internal brick walls in the Dining wing in the north south direction. The fire place and toilet block walls have large structural cracks. Plastered timber framed walls have suffered general damage.

v. Damage to Ceilings:

Ceilings have been significantly damaged at the Dining wing of the building with a lesser degree of damage occurring to ceilings in the Office wing. Damage ranges from severe across the whole ceiling to severe around edges to minor cracking.

vi. Collapse of brick chimneys:

The brick chimneys have collapsed or are damaged and have been removed. The chimneys have caused significant damage to the roof immediately adjacent where they pass through same.

vii. Damage to Roof:

The roof has remained relatively undamaged to the naked eye. However with the amount of relative movement in the walls some damaged is likely to have occurred.

viii. Other damage:

Cracked glass to some windows. Minor cracking was found in the ring foundation.

4. Immediate Securing of the Building

The following works are required to mitigate immediate hazards, temporarily secure the building, and provide weather tightness:

Fence of site completely and restrict access up to 10m from exterior face of gables and 6m from eaves.

Provide temporary support and bracing to the Northern end of the dining wing to the where walls have fallen away. Remove remainder of bricks.

Provide temporary support and bracing to the roof to the stairwell exterior wall where bricks have dislodged or fallen away. Remove remainder of bricks.

This wall is to be either deconstructed or propped temporarily as described in the L2 report.

Provide temporary support and bracing to the upper floor where there support is collapsing.

Further calculations and detail confirming this is still required and should be discussed in conjunction with the Contractor who will carrying out this work and yourselves.

Due care, safety equipment and precautions must be taken when carrying out the above work. Maintain awareness of fall hazards and escape routes if entering the building.

5. Long Term Repair

This section of the report outlines options for repair to restore the building to a minimum 67% NBS. In most areas over 100%NBS is obtained especially where we have added new elements. We are of the opinion that if the repair costs were within acceptable budget and the building was deemed significant enough to repair then this is possible. However we are of the opinion that the internal masonry walls and structural portions of the exterior masonry walls need to be replaced in the Dining area to remove these hazards. Options for repair and/or strengthening will ultimately need to be discussed with the owner, and will be subject to revised local authority legislation.

i. Exterior Walls:

Two options are available

- 1. Strengthening could be successfully completed by removing the internal brick skin and replacing it with a new timber framed wall. Tying the external skin to the new framing. Install new linings to provide any bracing required. Install conventional ceiling diaphragms. Steel studs will be required adjacent windows to support any concrete lintels. This option is likely to bring the building back up to 100%NBS by default.
- 2. Strengthening could be completed the installation of ceiling diaphragms and substantial fixings between diaphragm and walls. Walls will require strengthening for face loading via ties being installed between the brick skins (e.g. Helifix Cemtie)

and either filling the cavity or installing steel mullions internally. This option is likely to bring the building back up to 67%NBS without.

The exterior brick veneer is heavily damaged in places and repair would be by complete deconstruction of these section and reconstruction using modern methods and design tying properly to new or strengthened structural walls either timber or strengthened masonry. Where crack widths are less than 3mm then these can be stitching outer masonry veneer skin to the main inner structural brickwall or new timber framed wall with Helifix Helibars and Cemties in accordance with Helifix specifications at 400mm vertically by 600mm horizontally. All ties to be grouted both sides. Install ties through mortar lines on exterior face so that this can be easily re-plastered over to match original surface.

ii. Interior Walls:

Two options are available

- Strengthening could be completed the installation of ceiling diaphragms and substantial fixings between diaphragm and walls. Walls will require strengthening for face loading via ties being installed between the brick skins (e.g. Helifix Cemtie) and either filling the cavity or installing steel mullions internally.
- 2. Strengthening could be successfully completed by completely removing the brick walls and replacing them with new timber framed walls. Install new linings to provide any bracing required. Install conventional ceiling diaphragms. Steel studs will be required to support any internal concrete beams.

Either option is likely to bring the building back up to 100%NBS by default.

We recommend that all internal Brick walls be demolished and reconstructed using modern materials and design.

iii. Foundations General Cracking:

Seal all cracks in concrete foundation wall larger than 0.2mm with a pressure injected epoxy (e.g. Sikadur injectokit and Sikadur52⁰), or similar). Seal smaller cracks by painting over with a brushable crack filler (e.g. Resene Brushable Crack Filler).

iv. Veneer Face of Masonry walls General and Office Wing Masonry Walls:

Repair cracks that are less than 3mm width by filling cracks with grout and stitching with Helifix Helibars in accordance with Helifix specifications. Repair all cracked arch lintels by stitching with Helifix Helibars and Cemties in accordance with Helifix specifications. Stitch outer masonry veneer skin to the main inner structural brickwall with Helifix Helibars and Cemties in accordance with Helifix specifications at 600mm vertically by 800mm horizontally. All ties to be grouted both sides. Install ties through mortar lines on exterior face so that this can be easily re-plastered over to match original surface.

v. General cracks to plaster Walls and Ceilings generally:

55 DUNLOP ROAD, PO BOX 3315, NAPIER, 4142, NEW ZEALAND - P (06) 842 0111 - F (06) 842 0113 - E info@structuralconcepts.co.nz

Remove cracked/peeling/bubbled wallpaper to expose damaged Internal walls linings. Repair as appropriate using one of the following: Grind-out v-shape into cracked plaster. Re-plaster and overlay crack with fibreglass reinforcing mesh. Replaster over to provide a smooth finish. Remove lath and plaster walls and replace with Braceline GIB, or plaster over corru-lath/rib-lath.

In all cases, wall ties and hold-down straps should be installed in accordance with GIB braced wall and ceiling diaphragm specifications.

Realign, re-fix and re-paint racked door frames and architraves.

Reducing the weight of the building will assist in the above options so replacement of the structural and internal brickwalls will play an important part in these decisions.

The costs associated with the repairs would require the appropriate professional to visit the site to view the extent of damage. At this stage we have not provided any specific detailing for repair works but can so at your request.

7. Elements Not Inspected

The following is a list of elements not specifically inspected:

- Subfloor construction
- **Piles**
- Soils (Geotechnical preliminary report by others was reviewed)

8. Limitations

Findings presented in this report are for the sole use of the client. The findings may not contain sufficient information for use by other parties, and as such should not be relied upon unless discussed with Structural Concepts Ltd. We have exercised our services in a professional manner using a degree of care and skill normally, under similar circumstances, by reputable consultants practicing in this field at this time. No other warranty, expressed or implied, is made as to the professional advice presented in this report.

Yours faithfully STRUCTURAL CONCEPTS LTD

Garry Newton BE (Civil), MIPENZ(Civil, Structural), CPEng, IntPE(NZ)

Director

APPENDIX A. PHOTOGRAPHS

<u>Please note that the photographs provided in this report are not high quality and are for</u> providing information that shows the indicative damage found around the building for <u>structural engineering assessment only.</u>

APPENDIX B. L2 REPORT & MARKED-UP DRAWING INDICATING DAMAGED LOCATIONS

DSDector Initiale			- ·			11111 1 Date:			
Territorial Authority	Christchur	ch City	Date Time	-	3/3/2011	F	inal Pos	ting	P 1
Building Name	March V	ale II		-	2.2dpm		(e	.g. UNSAFE)	KTUK
Short Name	1010 14	ANC HO	mestere	Type	of Construction	1			
Address	Fendialt	en ed		1	Timber frame (100 0		0	
		- Feed		-	Steel frame	131 +(0>		Concrete she	arwal!
GPS Co-ordinates	S.	Ee			Tél-up concrete			Dentermoroed	masonry (9~
Contact Name	Grea W	and			Concrete frame			Conforced m	asonry
Contact Phone	021 221	7022			RC frame with r	nasoory infill		Coninea mas	sonry
Storeys at and above		Below		Prim	ary Occupancy	locality inter	0	Oelar;	
ground level	2	ground		П	Dwelling		5	Commencial	0#1-
Total gross floor area		Year	1899-				×	Commercial	Unices
(m²)	-	built	1903		Other residentia	al		Industrial	
No of residential Units	_Nil				Public assembly	y		Government	
Charles The second	~				School			Heritage Liste	đ
Photo Taken	(Yes)	No			Religious			Other	
nvestigate the building for	or the conditions	listed on pa	age 1 and 2,	and ch	eck the approp	riate colum	n A skete	th may be add	
Overall Hazards / Dama	ige N	linor/None	Moderat	te	Severe	ere eeren	or or Shell	Commonte	o on page 3
collapse, partial collapse, o	if foundation	Ø						Comments	
uilding or storey leaning		Ø							
Vall or other structural dam	age								
Nethead falling hazard									
fround movement, settleme	ent, slips	R			п –				
eighbouring building hazar	rd								
lectrical, gas, sewerage, w	aler hazmata				- H				
	1.1000.000				~				
Record any e	existing placard	on this bu	uilding;		Exist	ina			
			-		Placa	rd Type	INS	PECTED	
Chapters	aller I				(e.g. l	UNSAFE)			-
grounds for an UN	Sting based on th NSAFE posting. (e new evalu Localised S	uation and tea	am judg	gement. Severe	conditions	affecting	the whole build	ling are
INSPECTED placa	ird at main entran	ice. Post all	other placard	ds at ev	very significant	entrance. T	uire a RE ransfer fb	STRICTED USE	Place
				1100	-	-			ing to the top
INSPE	CTED	A	RESTR	RICTE	USE		UNSAR	E	
Record and second	inter G1	62		YE	LLOW YI	Y2	RE	D (RT)	P2 93
ineren any restr	N-000 00 058 01	entry						Section attraction	
Further Action R	ecommended								
Tok the solver se	one my ditumer	emont av	Priormencer						
	a veeded istate to	cation : Iv	place						
Samicades an	ieening evaluation	recommend	ed						
til Samcades an ☐ Samcades angin ☐ Setailed angin	The second second second	L_1	Geotachnical		C Othe	er:			
Samcapes an Detailed engin D Str Other recomm	ructural rendations:								
Samcades an Setaled angin Str Other recomm timated Overall Britel	ructural rendations:	alud- C		-					
Samcapes an Secaled engin Str Other recomm timated Overall Buildi	ructural nendations: ing Damage (Ex	clude Cont	ents)				Si	go here on come	letiza
Samcades an Setalled angin Str Other recomm timated Overall Buildi None	ructural nendations: ing Damage (Ex	clude Cont	ents)				si A	and here on comip	leing
Samcades an Secaled engin Other recomm timated Overall Buildi None 0-1 % 0 2-10 % 0	ructural nendations: ing Damage (Ex 31 61	clude Cont -60 % -99 %	ents)			-	Sk	gy here on corric	lein .

•	Structural Hazards/ Damage Foundations Roofs, floors (vertical load) Columns, pilasters, corbels Diaphragms, horizontal bracing Pre-cast connections	Mi P/A		Moderate	Severe	Comments <u>Minor creating to foundation</u> wall at isolated locations? <u>Brick arches supporting first floor</u> <u>created and learning actioneds</u> Severe domage to brick 1
	Non-structural Hazards / Damage	8	ď			adjacent starwell - wall partially
	Parapets, ornamentation Cladding, glazing Ceilings, light fixtures		0 Ø			Madesate to severe cracking to brick walls around restaurant area.
	Interior walls, partitions		ð			lacte roof thes_
	Stairs/ Exits Utilities (eg. gas, electricity, water)	NIA				Cracking to lath 8 plaster cellings in places
C	Geotechnical Hazards / Damage					Bride pillor sporting bolcomy distucted at top and a lean
<u> </u>	Ground movement, fissures Soil bulging, liquefaction		ত্র			
	General Comment					

Usability Category

1.9

Damage Intensity	Posting	Usability Category	Remarks
Light damage	Inspected	G1. Occupiable, no immediate further investigation required	
Low risk	(Green)	G2. Occupiable, rapairs required	
Medium damage	Restricted Use	Y1. Short term entry	
Medium risk	(Yellow)	Y2. No entry to parts until repaired or	
Heavy damage	(B1 Bightficant damage: repairs, strengthening possible	-
List dat	Unsafe (Red)	R2. Severe damage: demolition likely	
nger han.		R3. At risk from adjacent premises or from ground failure	

2 Inspection ID: _____ (Office Use Only)

"Sketch (optional)

Provide a sketch of the entire building or damage points. Indicate

damage points.

0

Recommendations for Repair and Reconstruction or Demolition (Optional) temporary remedical works

- Take photos of building to allow accurate reconstruction.
- Prop brick archways

Prop balcony Remark outor top bricks of learning balcony column. Attempt to push balcony column back with place Alternant to presen clear debis between credes is

brick wall. A Attempt to par brick a archway and walk

back in place.

Remare auter back oneer at restaurant walls which are diagonally

craced to expose interior structural walls for engineer to

- view. Further works to then be adviced
 - Remark extensor brick veneer from damaged by wides. Prop roof with forklift/racklocide, Expose damaged brick wan behind for engineer to view.
- Engineer to complete detailed seismic aspessment and streighting report.

Note: In all cases, retain existing brick for re-use.

3 Inspection ID: _____ (Office Use Only)

STRUCTURAL CONCEPTS [E: info@structuralconcepts.co.nz] P: +64 6 8420111 [F: +64 6 8420113] 55 DUNLOP RD, PO BOX 3315, ONEKAWA, NAPIER 4142, NEW ZEALAND

REV DATE DESCRIPTION

APPENDIX C. FLOOR PLANS

1605 110715 Monavalehomestead report

SEISMIC STRENGTHENING OF MONAVALE HOMESTEAD CHRISTCHURCH Existing Ground Floor Plans

Structural Concepts S01

PLACEDTS SOIL BEE- IDEC

CLIENT Christchurch City Council PROJECT ADDRES 63 Fendalton Road, Christchurch

Existing Ground Floor scale 1:200 @ A3

REV DATE DESCRIPTION

DATE Aug 2011 ACA2011 A3

STRUCTURAL CONCEPTS I E: into@structurelconcepts.co.nz I P: +64 6 8420111 F: +64 6 8420113 | 65 DUNLOP RD, PO BOX 3315, ONEKAWA, NAPIER 4142, NEW ZEALAND I

APPENDIX D. NEW WORKS EXAMPLES

This is not an exhaustive list of work to be done, confirm full extent of work with Architect prior to commencement of

construction:

GENERAL SCOPE OF WORKS:

remove all internal and external brick walls to lower floor

supporting first floor, retaining brick as for re-use Remove and re-construct columns and arches to match

existing with new structural support. - Rebuild all existing brick walls as above with timber

SEISMIC STRENGTHENING OF MONAVALE HOMESTEAD CHRISTCHURCH Proposed Ground Floor Plans

> CLIENT Christchurch City Council PROJECT ADDRESS 63 Fendalton Road, Christchurch

Proposed Ground Floor scale 1:200 @ A3

Ŵ

office

NC

REV DATE DESCRIPTION

SEISMIC STRENGTHENING OF MONAVALE HOMESTEAD CHRISTCHURCH Proposed First Floor Plans

CLIENT Christchurch City Council PROJECT ADDRESS 63 Fendalton Road, Christchurch

Proposed First Floor Scale 1:200 @ A3

REV DATE DESCRIPTION

STRUCTURAL CONCEPTS | E: inio@structurelconcepts.co.nz | P: +64 6 8420113 | F: +64 6 8420113 | 55 DUNLOP RD; PO BOX 3315, ONEKAWA, NAPLER 4142, NEW ZEALAND

STRUCTURAL CONCEPTS I E: into@structuralconcepts.co.nz I P: +64 6 8420111 I F: +64 6 8420111 P: +64 6 8420111 P: +64 6 8420113 I 55 DUNLOP RD, PO BOX 3315, ONE KAWA, NAPIER 4142, NEW ZEALAND I

Q

REV DATE DESCRIPTION

ALGUTT DAGI - 23GI & ATTOSA A LING BUA PES - DRG TT/DJA DATE Aug 2011 ACA2011 A3 0 REV Structural Concepts S21 new flitch beam in arch, frame down to shape of arch for brick support W13 \$26 \$27 \$27 W12 004 331 existing roofing tless and structure, inspect for damage, and replace tles as required MONAVALE HOMESTEAD CHRISTCHURCH Section SEISMIC STRENGTHENING OF new 1904/5 MSG8 H1.2 timber framing @ 400 crs to reptace interior walk, confirm wall width on site and construct to suit, see structural plan for framing locations new 140x45 MSG8 H1.2 timber framing @ 400 ors to -replace interior walls. confirm wall width on site and construct to suit, see structural plan for framing locations į, ଞ S31 new lintel to window opening, s structural plan for lintel sizes See S j one layer of 13mm Gib Ultraline and one layer of 7mm bracing ply element— to timber framed interior wall S32 C07 S32 C06 ĺ replace all existing chimneys with brick slips on timber fram Section B-B scale 1:100 @ A3 ſ CLIENT Christchurch City Council PROJECT ADREES 63 Fendalton Road, Christchurch 1_ 4 existing plaster cladding to remain, inspect for damage and repair as required new lintel to window opening, see structural plan for lintel sizes new window joinery to match existing, confirm_ exact configuration with conservation architect re-use existing concrete cills to windows and doorsre-use existing bricks to create a brick venner cladding with the back to new timber framing new 240x45 MSG8 H1.2 timber framing @ 400 crs to replace all lower floor double brick walk, -see structural plan for framing locations (IN W11 806 S27 S26

STRUCTURAL CONCEPTS I E: into@structuralconcepts.co.nz | P: +64 6 8420111 | F: +64 6 8420112 | F: +64 6 8420

REV DATE DESCRIPTION

55 DUNLOP ROAD, PO BOX 3315, NAPIER, 4142, NEW ZEALAND, P (06) 842 0111 F (06) 842 0113, E info@structuralconcepts.co.nz

Client: Christchurch City Council

Project: Mona Vale Homestead 63 Fendalton Road, Christchurch

Ref: 1605 prelim

Date: 23-Jun-11

CALCULATIONS

BY GARRY NEWTON BE (Civil) , MIPENZ(Civil, Structural), CPEng, IntPE(NZ)

CONTENTS

55 DUNLOP ROAD, PO BOX 3315Client: Christchurch City CouncilRef:1605 prelimNAPIER, 4142, NEW ZEALAND
P (06) 842 0111 F (06) 842 0113Project: Mona Vale Homestead
63 Fendalton Road, ChristchurchDate:23/6/11E info@structuralconcepts.co.nzSubject: Gravity LoadsSubject: Gravity LoadsSubject:

Sheet No.: 2

Loads

Roof Clay tiles Timber 20.6 Purlins 05 .4 Battens 05 1.2 Rockwool Insu. Gib Board 13 Timber 15.6	0.670 0.092 0.034 0.011 0.002 0.120 0.069 kPa	Upper External Walls Portland Plaster Timber 15.4 140. Nogs & plates Rockwool Insu. Gib Board 13	0.290 0.103 0.104 0.002 0.120 0.120	kPa
Timber floor 25mm Pine deck Timber 20.6 90. Nogs & plates Battens 05 1.2 Rockwool Insu. Gib Board 13	0.138 0.092 0.067 0.011 0.002 0.120	- Timber 15.4 140. Nogs & plates Gib Board 13 Gib Board 13	0.103 0.104 0.120 0.120	_
	<u>0.429</u> kPa	-	0.447	kPa
Lower Exterior Brick 100 Brick veneer 215 Med Brick	Walls 1.900 4.600	<u>Live loads</u> A2 other rooms Office Utility Com. Kitchens R2 Roofs	2.00 3.00 3.00 0.25	kPa kPa kPa kPa

6.500 kPa

Star Star			1 - 1	
55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Gravity Loads		

Loads

5

Sheet No.: 3

Interior Brick Walls 215 Med Brick 4.6

4.600

4.600 kPa

55 DUNLOP ROAD, PO BOX 3315 Client: NAPIER, 4142, NEW ZEALAND P (06) 842 0111 F (06) 842 0113 E info@structuralconcepts.co.nz

Christchurch City Council 1605 prelim Ref: Project: Mona Vale Homestead 23/6/11 Date: 63 Fendalton Road, Christchurch BY: GN Subject: Seismic loads to NZS1170 - Office areas

Seismic Loads to NZS 1170.5

<u>Seismic</u>	Loads to NZS 1170.5		Sheet No.:	4					
Ref:	Desigr	า						Output	
	Design working live					50 Years			
	Importance level					2			
	Annual Probability of Annual Probability of	exceedan exceedan	ce (invers	se) Ultimate se) Service	e	500 25			
	Element			Area/length	Load Kpa	Total kN	Live lo	on	
	Roof			80.00	1.00	79.86	Total fl	oor area	270.0
	Partitions			20.00	0.45	8.94		2	
	Upper External Wa	lls		42.00	0.62	26.00	.3+-	5	
				0.00	0.00	0.00	\sqrt{A} =		0.500
				0.00	0.00	0.00	But no	.5	
				0.00	0.00	0.00			
		1.00	0.40	0.00	0.00	0.00]		
				T		114.80	kN		
	Element			Area/length	Load Kpa	Total kN			
	Timber floor			80.00	0.43	34.36			
	Upper External Wa	lls		42.00	0.62	26.00			
	Lower Exterior Brick	k Walls		72.00	6.50	468.00			
	Roof Interior Brick Walls Partitions			105.00	1.00	104.82			
				36.00	4.60	165.60			
				36.00	0.45	16.09			
	Office Utility	0.50	0.40	80.00	3.00	240.00			
		0.50	0.40	0.00	0.00	0.00			
						862.87	kN		

55 DUNLOP ROAD, PO BOX 3315 Client: NAPIER, 4142, NEW ZEALAND P (06) 842 0111 F (06) 842 0113 E <u>info@structuralconcepts.co.nz</u>

Christchurch City Council Project: Mona Vale Homestead 63 Fendalton Road, Christchurch

1605 prelim Ref: 23/6/11 Date: BY: GN

Subject: Seismic loads to NZS1170 - Office areas

				Sheet No.:	5	
Design				Output		
Soil type						
D. Deep or soft soil						
Across the building						
Period of building across the building		0 40				
Does the seismic bracing have ductile canabi	lities but is desig	ned as n	ominally di	I Ictile	✓	
Structural ductility factor (Illtimate)	$\mathbf{m} = \mathbf{m}$	2 00	orrinnany ac			
Structural ductility factor (Service SI S1)	 m =	1 25				
Hazard Factor Christchurch	Z =	0.3				
Return period factor	Ru =	1.00				
Return period factor	Rs =	0.25				
Structural Performance factor (Ultimate)	Sp =	0.70				
Structural Performance factor (Service)	Sp =	0.70				
Spectral Shape Factor (across)	Ch(T) =	3.00				
Near Fault factor	N(T.D) =	1.0	n/a			
Elastic site spectra (Ultimate)	C(T) =	0.90				
Elastic site spectra (Service)	C(T) =	0.23				
Ultimate	km =	1.57				
Service	km =	1.14				
Ultimate						
Horizontal design action coefficients (Across)	Cd(T1) =	0.40	But not le	i ss than 0.03	30Ru	
Ultimate force across the building	Cd(T1) x Wi =	391.96	kN Total			
Service						
Horizontal design action coefficients (Across)	Cd(T1) =	0.14				
Service force across the building	$Cd(T1) \times Wi =$	134.74	kN Total			
Along the building			int forai			
Period of building along the building		0 40				
Does the seismic bracing have ductile capabi	lities but is desig	ned as n	ominally di	ı tile	7	
Structural ductility factor (Ultimate)	m =	2 00	orrang at			
Structural ductility factor (Service SI S1)	m =	1 25				
Structural Performance factor (Ultimate)	Sp =	0.70				
Spectral Shape Factor (across)	Ch(T) =	3.00				
Near Fault factor	N(T D) =	1.0				
Elastic site spectra (Illtimate)	С(T) =	0.90				
Elastic site spectra (Service)	с(T) =	0.70				
Illtimate	km =	1 57				
Service	km =	1 14				
		1.14				
Horizontal design action coefficients (Across)	Cd(T1) =	0 40	But not le	l ss than 0.01	30Ru	
Ultimate force along the building	Cd(T1) x Wi =	391.96	kN Total		Jona	
Service						
Horizontal design action coefficients (Across)	Cd(T1) -	0 14				
Service force across the building		134 74	kN Total			
		104.74	AN IOLAI	I		

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E info@structuralconcepts.co.nz	Subject [.]	Seismic Forces		

С	Loads to NZS 1170.5				Sheet No.:	6
	Design				Output	
	Seismic weight at level i	Wi	114.80) kN		
	Height at level i	hi	6.0) m		
	Seismic weight at level I	Wi	862.87	7 kN		
	Height at level I	hi	3.0) m		
	Sum of Wihi		3277.4			
	Base shear ultimate		391.96	kN		
	Base shear service		134.74	kN		
	8% of base shear to be applied at top level		31.36	kN		
	8% of base shear to be applied at top level		10.78	kN		
	$Fi = .92V \frac{Wihi}{\sum(Wihi)}$ <u>Ultimate</u> Equivalent Lateral force at level i (Roof) Equivalent Lateral force at level i				107.14 284.81 0.00 0.00 0.00 0.00 391.96 kN 7839.14 BU'	2143 base V s
	Equivalent Lateral force at level i (Roof)				36.83	
	Equivalent Lateral force at level i				97.90	
	Equivalent Lateral force at level i				0.00	
	Equivalent Lateral force at level i				0.00	
	Equivalent Lateral force at level i				0.00	
	Equivalent Lateral force at level i				0.00	
					134.74 kN	base V

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Bracing Capacity - Upper Office Wing		

		Sheet No.: 7
Ref:	Design	Output
	All walls have been lined with gypsum wall boards (Fixing at nominal	
	300 spacings) therefore utilising the allowable strength values determined	
	independent of the Gib manual	
	From table 11.1 a strength value of 3 kN/m per side with a strength	
	reduction factor of 0.7 can be used.	
	R = 3 kN/m per side	
	$\phi = 1$	
	\heartsuit R = 3 kiv/m per side	
	Along	
	length of wall available	
	6 one side	required
	10 two sides	2143 BU's
	$Rtotal = 6 \times 60 \times 2.4/2.7 + 10 \times 60 \times 2.4/2.7 \times 2$	
	= 1387 BUS	1387 BUS
	07.33 KN OK	65 %NBS 7 = 0.3
		88 %NBS z=0.22
	Across	
	length of wall available	
	7 enerside	
	7 One side	21/3 BII's
	$Rtotal = 7 \times 60 \times 2.4/2.7 + 12.5 \times 60 \times 2.4/2.7 \times 2$	provided
	= 1707 BU's	1707 BU's
	85.33 kN OK	
		80 %NBS z = 0.3
		100 %NBS z=0.22
	Therefore it is determined that the wall linings will provide the strength	
	required without necessarily strictly complying with the Gib brace requirement	its
	Also it is noted that the main building stucture is also capable of carrying som	e of this load
	and therefore reduce the requirements of the gypsum wall strength.	

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Office Wing Masonry Walls In Plane		

In-Plane	strength of walls and piers to FFMA URM seismic qui	delines			Sheet No.:	8
Ref:	Desian	Output	-			
	The following calculation follows the FEMA 273 guil	d lines for se	ismic reh	abilitation		
	of existing unreinforced masonry buildings (URM). T					
	walls between window and door openings. Typica					
	diagonal tension in the panel or toe compressive s	dina				
	shear or expected rocking strength can also limit th	he canacity				
		ic capacity	•			
	heff					
	Effective height and pier geometry may vary in t	the same wa	all assemt	oly		
	Expected axial gravity force on pier	Por	207	kN		
	Diar dimontions					
	Effective beight of pier					
	Dier length (net mortared length)					
	Pier thickness (net mortared width)	L Tm	200	mm		
	Net mertered erec					
	Net mortared area	N /-	6900000	mm²		
<i>(</i>)	Average bed-joint snear strength	Vte	1.00	мра		
(7-1)	Expected shear strength $\frac{0.75\left(0.75vte + \frac{Pce}{An}\right)}{1.5}$	= Vme	0.390	Мра		
	Expected lateral strength is the lesser of:-	-				
(7-3)	Bed-joint shear strength Vme x An	= QCE	2691.0	kN		
		6	0.5			
	a = 0.5 for cantilever or 1.0 for fixed pier	a	0.5			
(7-4)	Expected rocking strength $.9aPce\left(\frac{L}{heff}\right)$	= QCE	1071.2	kN		
	Masonry compressive strength Diagonal tension strength	fm	4.0	Мра		
	Vme = fdt in eq. (7-5) onl	y fdt	0.390	Мра		
	Vertical axial compressive stress	fa	0.030	Мра		
	Aspect ratio	(L / heff) =	11.50			
					I	

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Office Wing Masonry Walls In Plane		

In-Plane	strength of walls and piers continued				Sheet No.: 9
Ref:	Design				Output
(7-5)	Expected lateral strength of pier is lesser of:- Diagonal tenson stress				
	$Vdt = fdt.An \left(\frac{L}{heff}\right) \sqrt{1 + \frac{fa}{fdt}}$	=	QCL	32114.7 kN	
(7-6)	Toe compressive stress				
	$Vtc = aPcl\left(\frac{L}{heff}\right)\left(1 - \frac{fa}{0.7fm}\right)$	=	QCL	1177.5 kN	
	The govening lateral force for this pier is Actural force on pier is			1071.2 kN 392.0 kN	
	% of NBS, proportion of NZS1170.5		%NBS	273 %	
				Low Hazard	

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Internal Brick Walls Out of Plane		

Verticall	y spanning wall panel out-of-plane dynamic loads to	NZSEE			Sheet No.:	10
Ref:	Design				Output	
	Height of the upper most seismic mass	hn	6.0	m		
	Height of support for wall (from ground level)	hi	0.0	m		
	Mass of masonry used in design		22	kN/m³		
	Height of panel between supports	h	3.50	m		
	Length of panel between supporting walls	L	2.00	m		
	Thickness of wall	tnom	225	mm		
	Weight acting on top of the panel	Р	6.0	kN		
	Assuming a hinge forms at mid height of the panel w	e have:	-			
	Weight of top part of panel	Wt	17.3	kN		
	Weight of Bottom part of panel	Wb	17.3	kN		
(3)	Effective thickness of wall (.975 - 0.025P/W) = Eccentricities	t	218.4	mm		
	Eccentricity of P measured from centroid of Wt	ер	109.2	mm		
	Eccentricity of bott pivot measured from centroid of Wb	eb	109.2	mm		
	Eccentricity of mid-height pivot measured centroid of Wt	et	109.2	mm		
	Eccentricity of mid-height pivot measured centroid of Wb	eo	109.2	mm		
	Mid-Height deflection					
	bh					
10(7)	$\overline{2a}$ = D i					
	Where:-					
	b = Wb.eb + Wt(eo+eb+et) + P(eo+eb+et+ep) - C(V)	Vbyb + W	/tYt)			
	a = Wb.yb + Wt(h/2 + Yt) + Ph					
	Interstorey slope divided by storey height	С	0.01	% Drift		
	Vertical Eccentricity of Wt to top pivot	Yt	875	mm		
	Vertical Eccentricity of Wb to bottom pivot	Yb	875	mm		
10(8)	Coefficient for formula 10(8)	b	9885.2			
10(9)	Coefficient for formula 10(9)	а	81637.5			
	bh					
10(7)	Instability deflection is:- $\overline{2a}$ =	Di	212	mm		
	Maximum usable deflection is	.6 D i	127.1	mm		
10(10)	Approximate period of vibration	Тр	1.209	S		
	Seismic coefficient for elastically responding part		1	I.		
	Design working live		50 Years			
	Importance level		▼			
	Annual Probability of exceedance (inverse) Ultimate		500			
	Soil type Location					
	D. Deep or soft soil Christchurch	•				
	For Parts					
	Floor acceleration is such to causing yielding of part	See tab	le C8.2			
(8)	Structural ductility of part (Table C8.2)	INp=	1.00		NZSEE recomm	endation

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Internal Brick Walls Out of Plane		

Verticall	y spanning wall panel out-of-plane continued				Sheet No.: 11
Ref:	Design				Output
T 3.3	Hazard Factor	Ζ =	0.3		
T 3.5	Return period factor	Ru =	1.00		
T 3.1	Spectral Shape Factor for parts	Ch(0) =	1.12		
T 3.7	Near Fault factor	N(T.D) =	1.0		
	Site Hazard coefficient $Ch(0) \times 7 \times R \times N(TD) =$	C(0) =	0.34		
Т 0 1	Part risk factor	Rn	1.0		
8.3	Floor height coefficient	NΡ	1.0		
0.0	Eq 8.3(1) $\left(1+\frac{hi}{6}\right)$	Chi	1.000		
	Eq 8.3(2) $\left(1+10\frac{hi}{hn}\right)$	Chi	1.0		
		Chi	1.000		
	Period of part	Тр	1.21	Sec	
8.4	Part spectral shape coefficient	Ci(Tp)	1.1		
8.2	Design response coefficient for wall				
	C(0).Chi.Ci(Tp)	= Cp(Tp)	0.36		
(9)	Participation factor for rocking system				
	Rotational inertia of the mass				
Jbo + J	$b + \frac{1}{9} \left[Wb \left[eb^2 + yb^2 \right] + Wt \left[(eo + eb + et)^2 + yt^2 \right] + P \left[(eo + eb + et + ep)^2 \right]$]]+ Janc			
	And is:	1	3036		
10(12)	Participation factor $\frac{(Wb.yb + Wt.yt)h}{2 Ig}$	- g	1.781		
10(12)		ъ			
	Displacement response $g(Tp/2p)^2.Dp(Tp).Rp.g$	- Dob	0 220		
	% of NBS, proportion of N7S1170.5	- Dpn	0.227		
	$[(1.2)(0.6)\Delta i]/Dph$	= %NBS	66.5	%	
			Low	<u>Hazard</u>	NZSEE guidelines

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	External Brick Walls Out of Plane		

Vertical	y spanning wall panel out-of-plane dynamic loads to	NZSEE			Sheet No.:	12
Ref:	Design				Output	
	Height of the upper most seismic mass	hn	6.0	m		
	Height of support for wall (from ground level)	hi	0.0	m		
	Mass of masonry used in design		22	kN/m³		
	Height of panel between supports	h	3.50	m		
	Length of panel between supporting walls	L	2.00	m		
	Thickness of wall	tnom	225	mm		
	Weight acting on top of the panel	Р	6.0	kN		
	Assuming a hinge forms at mid height of the panel w	e have:	-			
	Weight of top part of panel	Wt	17.3	kN		
	Weight of Bottom part of panel	Wb	17.3	kN		
(3)	Effective thickness of wall (.975 - 0.025P/W) =	t	218.4	mm		
	<u>Eccentricities</u>					
	Eccentricity of P measured from centroid of Wt	eр	109.2	mm		
	Eccentricity of bott pivot measured from centroid of Wb	eь	109.2	mm		
	Eccentricity of mid-height pivot measured centroid of Wt	et	109.2	mm		
	Eccentricity of mid-height pivot measured centroid of Wb	eo	109.2	mm		
	Mid-Height deflection					
	bh					
10(7)	$2a = \mathbf{D}\mathbf{i}$					
	Where:-					
	b = Wb.eb + Wt(eo+eb+et) + P(eo+eb+et+ep) - C(W)	/byb + W	VtYt)			
	a = Wb.yb + Wt(h/2 + Yt) + Ph	C				
	Interstorey slope divided by storey height	C	0.01	% Drift		
	Vertical Eccentricity of Wt to top pivot	Yt	875	mm		
	Vertical Eccentricity of Wb to bottom pivot	Yb	875	mm		
10(8)	Coefficient for formula 10(8)	b	9885.2			
10(9)	Coefficient for formula 10(9)	а	81637.5			
(-)	bh	D'	010			
10(7)	Instability deflection is:- $2a =$	DI	212	mm		
	Maximum usable deflection is	6Di	107 1	mm		
10(10)	Approximate period of vibration	.001 Tn	1 2 / . 1	s		
10(10)	Seismic coefficient for elastically responding part	īΡ	1.207	3		
			50 Voars			
				<u> </u>		
	Importance level		2			
	Annual Probability of exceedance (inverse) Ultimate		500			
	Soil type Location					
	D. Deep or soft soil	•				
	For Parts					
	Floor acceleration is such to causing yielding of part	See tab	le C8.2			
(8)	Structural ductility of part (Table C8.2)	mp=	= 1.00		NZSEE recomm	endation

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	External Brick Walls Out of Plane		

Vertically	y spanning wall panel out-of-plane continued				Sheet No.:	13
Ref:	Design				Output	
T 3.3	Hazard Factor	Z =	0.3		·	
T 3.5	Return period factor	Ru =	1.00			
T 3.1	Spectral Shape Factor for parts	Ch(0) =	1.12			
T 3.7	Near Fault factor	N(T,D) =	1.0			
	Site Hazard coefficient Ch(0) x Z x R x N(T,D) =	C(0) =	0.34			
T. 8.1	Part risk factor	Rp	1.0			
8.3	Floor height coefficient					
	Eq 8.3(1) $\left(1+\frac{hi}{6}\right)$	Chi	1.000			
	Eq 8.3(2) $\left(1+10\frac{hi}{hn}\right)$	Chi	1.0			
		Chi	1 000			
	Period of part	aT	1.21	Sec		
8.4	Part spectral shape coefficient	Ci(Tp)	1.1			
8.2	Design response coefficient for wall					
	C(0).Chi.Ci(Tp) =	Ср(Тр)	0.36			
(9)	Participation factor for rocking system					
	Rotational inertia of the mass					
Jbo + Jt	$o + \frac{1}{g} \Big[Wb \Big[eb^2 + yb^2 \Big] + Wt \Big[(eo + eb + et)^2 + yt^2 \Big] + P \Big[(eo + eb + et + ep)^2 \Big] \Big]$	+ Janc				
	And is:- $(Wb.yb+Wt.yt)h$	J	3036			
10(12)	Participation factor $2Jg =$	g	2.652			
	Displacement response $g(Tp/2p)^2 \cdot Dp(Tp) \cdot Rp \cdot g$ = % of NBS, proportion of NZS1170.5	Dph	0.341			
	$[(1.2)(0.6)\Delta i]/Dph$ =	* %NBS	44.7	%		
			<u>Modera</u>	ate hazard	NZSEE guidelii	nes

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Stir Brick wall		

<u>Verticall</u>	y spanning wall panel out-of-plane dynamic loads to	<u>NZSEE</u>			Sheet No.:	14
Ref:	Design				Output	
	Height of the upper most seismic mass	hn	6.0	m	-	
	Height of support for wall (from ground level)	hi	0.0	m		
	Mass of masonry used in design		22	kN/m³		
	Height of panel between supports	h	6.00	m		
	Length of panel between supporting walls	L	1.00	m		
	Thickness of wall	tnom	225	mm		
	Weight acting on top of the panel	Р	0.0	kN		
	Assuming a hinge forms at mid height of the panel w	e have:	-			
	Weight of top part of panel	Wt	14.9	kN		
	Weight of Bottom part of panel	Wb	14.9	kN		
(3)	Effective thickness of wall (.975 - 0.025P/W) =	t	219.4	mm		
	Eccentricities					
	Eccentricity of P measured from centroid of Wt	ер	109.7	mm		
	Eccentricity of bott pivot measured from centroid of Wb	eb	109.7	mm		
	Eccentricity of mid-height pivot measured centroid of Wt	et	109.7	mm		
	Eccentricity of mid-height pivot measured centroid of Wb	eo	109.7	mm		
	Mid-Height deflection					
	bh					
10(7)	$2a = \mathbf{D}\mathbf{i}$					
	Where:-					
	b = Wb.eb + Wt(eo+eb+et) + P(eo+eb+et+ep) - C(W)	/byb + W	/tYt)			
	a = Wb.yb + Wt(h/2 + Yt) + Ph	a				
	Interstorey slope divided by storey height	С	0.01	% Drift		
	Vertical Eccentricity of Wt to top pivot	Yt	1500	mm		
	Vertical Eccentricity of Wb to bottom pivot	Yb	1500	mm		
10(8)	Coefficient for formula 10(8)	b	6069.9			
10(9)	Coefficient for formula 10(9)	а	89100			
10(7)	Instability deflection is:- $\frac{bh}{2a} =$	Di	204	mm		
	24					
	Maximum usable deflection is	.6 D i	122.6	mm		
10(10)	Approximate period of vibration	Тр	1.758	S		
	Seismic coefficient for elastically responding part	-				
	Design working live		50 Years	-		
	Importance level		2 🔻			
	Annual Probability of exceedance (inverse) Ultimate		500			
	Soil type Location					
	D. Deep or soft soil Christchurch	-				
	For Parts					
	Floor acceleration is such to causing yielding of part	See tab	le C8.2			
(8)	Structural ductility of part (Table C8.2)	mp=	1.00		NZSEE recomm	endation

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Stir Brick wall		

Vertically	y spanning wall panel out-of-plane continued				Sheet No.:	15
Ref:	Design				Output	
T 3.3	Hazard Factor	Z =	0.3			
T 3.5	Return period factor	Ru =	1.00			
T 3.1	Spectral Shape Factor for parts	Ch(0) =	1.12			
T 3.7	Near Fault factor	N(T,D) =	1.0			
	Site Hazard coefficient Ch(0) x Z x R x N(T,D) =	C(0) =	0.34			
T. 8.1	Part risk factor	Rp	1.0			
8.3	Floor height coefficient					
	Eq 8.3(1) $\left(1 + \frac{hi}{6}\right)$	Chi	1.000			
	Eq 8.3(2) $\left(1+10\frac{hi}{hn}\right)$	Chi	1.0			
		Chi	1 000			
	Period of part	In	1.000	Sec		
8.4	Part spectral shape coefficient	Ci(Tp)	0.5	000		
8.2	Design response coefficient for wall					
	C(0).Chi.Ci(Tp)	= Cp(Tp)	0.17			
(9)	Participation factor for rocking system Rotational inertia of the mass					
Jbo + Ji	$o + \frac{1}{g} \Big[Wb \Big[eb^2 + yb^2 \Big] + Wt \Big[(eo + eb + et)^2 + yt^2 \Big] + P \Big[(eo + eb + et + ep)^2 \Big]$	+ Janc				
	And is:- $(Wb.yb + Wt.yt)h$	J	7004			
10(12)	Participation factor $2J_g$	= g	2.896			
	Displacement response $g(Tp/2p)^2.Dp(Tp).Rp.g$	= Dph	0.364			
	% of NBS, proportion of NZS1170.5 [(1.2)(0.6)Δi]/ Dph	= %NBS	40.4	%		
			<u>Modera</u>	<u>te hazard</u>	NZSEE guidelir	nes

55 DUNLOP ROAD, PO BOX 3315Client:NAPIER, 4142, NEW ZEALANDProject:P (06) 842 0111 F (06) 842 0113Subject:

Client: Christchurch City Council Project: Mona Vale Homestead 63 Fendalton Road, Christchurch Subject: Seismic loads to NZS1170 - dining areas
 Ref:
 1605 prelim

 Date:
 23/6/11

 BY:
 GN

Ref: Design Design working live 50 Years	
Design working live 50 Years	
Importance level 2	
Annual Probability of exceedance (inverse) Ultimate 500	
Annual Probability of exceedance (inverse) Service 25	
Element Area/length Load Kpa Total kN Live load reduction	
Roof 216.00 1.00 215.62 Total floor area 2	70.0
Partitions 45.00 0.45 20.12	
Upper External Walls 81.00 0.62 50.15 $.3 + \frac{3}{5}$	
$0.00 0.00 0.00 \sqrt{A} = 0$.500
0.00 0.00 But not less than .5	
0.00 0.00 0.00	
1.00 0.40 0.00 0.00 0.00	
285.89_kN	
Element Area/length Load Kpa Total kN	
Timber floor 216.00 0.43 92.76	
Upper External Walls 81.00 0.62 50.15	
Lower Exterior Brick Walls 70.00 6.50 455.00	
Roof 0.00 1.00 0.00	
Interior Brick Walls 54.00 4.60 248.40	
0.00 0.00 0.00	
A2 other rooms 0.50 0.60 216.00 2.00 432.00	
0.50 0.40 0.00 0.00 0.00	
975.91 kN	

Total building weight 1261.79 kN

55 DUNLOP ROAD, PO BOX 3315Client:Christchurch City CouncilRef:1605 prelimNAPIER, 4142, NEW ZEALANDProject:Mona Vale HomesteadDate:23/6/11P (06) 842 0111 F (06) 842 011363 Fendalton Road, ChristchurchBY:GNSubject:Seismic loads to NZS1170 - dining areas

					Sheet No.:	17
Ref:	Design				Output	
	Soil type					
	D. Deep or soft soil					
	Across the building					
	Period of building across the building		0.40			_
	Does the seismic bracing have ductile capabili	ties but is desig	ned as n	ominally du	uctile	<u>_</u>
	Structural ductility factor (Ultimate)	m =	2.00	- - -		
	Structural ductility factor (Service SLS1)	m =	1.25			
	Hazard Factor Christchurch	Z =	0.3			
	Return period factor	Ru =	1.00			
	Return period factor	Rs =	0.25			
	Structural Performance factor (Ultimate)	Sp =	0.70			
	Structural Performance factor (Service)	Sp =	0.70			
	Spectral Shape Factor (across)	Ch(T) =	3.00			
	Near Fault factor	N(T,D) =	1.0	n/a		
	Elastic site spectra (Ultimate)	C(T) =	0.90			
	Elastic site spectra (Service)	C(T) =	0.23			
	Ultimate	k m =	1.57			
	Service	k m =	1.14			
	<u>Ultimate</u>					
	Horizontal design action coefficients (Across)	Cd(T1) =	0.40	But not le	ss than 0.03	30Ru
	Ultimate force across the building	Cd(T1) x Wi =	505.86	kN Total		
	<u>Service</u>					
	Horizontal design action coefficients (Across)	Cd(T1) =	0.14			
	Service force across the building	Cd(T1) x Wi =	173.89	kN Total		
	Along the building					
	Period of building along the building		0.40			
	Does the seismic bracing have ductile capabili	ties but is desigi	ned as n	ominally du	uctile	✓
	Structural ductility factor (Ultimate)	m =	2.00			
	Structural ductility factor (Service SLS1)	m =	1.25			
	Structural Performance factor (Ultimate)	Sp =	0.70			
	Spectral Shape Factor (across)	Ch(T) =	3.00			
	Near Fault factor	N(T,D) =	1.0			
	Elastic site spectra (Ultimate)	C(T) =	0.90			
	Elastic site spectra (Service)	C(T) =	0.23			
	Ultimate	k m =	1.57			
	Service	k m =	1.14			
	<u>Ultimate</u>					
	Horizontal design action coefficients (Across)	Cd(T1) =	0.40	But not le	ss than 0.03	30Ru
	Ultimate force along the building	Cd(T1) x Wi =	505.86	kN Total		
	<u>Service</u>					
	Horizontal design action coefficients (Across)	Cd(T1) =	0.14			
	Service force across the building	Cd(T1) x Wi =	173.89	kN Total		

>)

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Seismic Forces - Dining Areas		

mic	: Loads to NZS 1170.5				Sheet No.:	18
	Design				Output	
	Seismic weight at level i	Wi	285.89	kN		
	Height at level i	hi	6.0	m		
	Seismic weight at level I	Wi	975.91	kN		
	Height at level I	hi	3.0	m		
	Sum of Wihi		4643.0			
	Base shear ultimate		505.86	kN	•	
	Base shear service		173.89	kN		
	8% of base shear to be applied at top level		40.47	kN		
	8% of base shear to be applied at top level		13.91	kN		
	$Fi = .92V \frac{Wihi}{\sum(Wihi)}$ <u>Ultimate</u> Equivalent Lateral force at level i (Roof) Equivalent Lateral force at level i				212.40 293.46 0.00 0.00 0.00 0.00 505.86 10117.20	4249 kN base V
	Equivalent Lateral force at level i (Roof)				73.01	
	Equivalent Lateral force at level i				100.88	
	Equivalent Lateral force at level i				0.00	
	Equivalent Lateral force at level i				0.00	
	Equivalent Lateral force at level i				0.00	
	Equivalent Lateral force at level i				0.00	
					173.89	kN base V

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subiect:	Bracing Capacity - Upper Dining Wing		

		Sheet No.: 19
Ref:	Design	Output
	All walls have been lined with gypsum wall boards (Fixing at nominal 300 spacings) therefore utilising the allowable strength values determined by NZSEE Table 11.1 we have assessed the strength of the walls independent of the Gib manual. From table 11.1 a strength value of 3 kN/m per side with a strength reduction factor of 0.7 can be used	
	reduction factor of 0.7 can be used.	
	$ \begin{array}{rcl} R = & 3 & kN/m \text{ per side} \\ \phi & = & 1 \end{array} $	
	Ø R = 3 kN/m per side 60 BU's/m	
	Along	
	length of wall available	
	11 one side 11 two sides Rtotal = 11 x 60 x 2.4/2.7+11 x 60 x 2.4/2.7 x 2 = 1760 BU's 88.00 kN OK Across	required 4249 BU's provided 1760 BU's 41 %NBS z = 0.3 56 %NBS z=0.22
	length of wall available	
	15 one side 10 two sides Rtotal = 15 x 60 x 2.4/2.7+10 x 60 x 2.4/2.7 x 2 = 1867 BU's 93.33 kN OK	required 4249 BU's provided 1867 BU's
		44 %NBS z = 0.3
		60 %NBS z=0.22
	Therefore it is determined that the wall linings will provide the strength required without necessarily strictly complying with the Gib brace requiremen Also it is noted that the main building stucture is also capable of carrying some and therefore reduce the requirements of the gypsum wall strength.	ts e of this load

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Dining Wing Masonry Walls In Plane Across		

In-Plane	strength of walls and piers to FEMA URM seismic qui	idelines			Sheet No.:	20
Ref:	Design				Output	
	The following calculation follows the FEMA 273 guil	d lines for se	ismic reh	abilitation		
	of existing unreinforced masonry buildings (URM). T	his calculati	on is for p	oiers or		
	walls between window and door openings. Typica	ally these pie	ers are lim	ited by		
	diagonal tension in the panel or toe compressive s	dina				
	shear or expected rocking strength can also limit t					
	heff heff					
	Effective height and pier geometry may vary in	the same wa	all assemt	oly		
	Expected axial gravity force on pier	Pce	100	kN		
	Pier dimentions					
	Effective height of pier	heff	3.00	m		
	Pier length (net mortared length)					
	Pier thickness (net mortared width)					
	Net mortared area		3400000	mm ²		
	Average bed-joint shear strength	Vte	1 00	Mna		
(7-1)	Expected shear strength	Vic	1.00	mpa		
(/-1)	$\frac{0.75\left(0.75vte + \frac{Pce}{An}\right)}{1.5}$	= Vme	0.390	Мра		
()	Expected lateral strength is the lesser of:-	0	1005 0			
(7-3)	Bed-joint shear strength Vme x An	= QCE	1325.0	KN		
	n 0 E for contilever or 1.0 for fixed pier	2	0.5			
	a = 0.5 for cantilever of 1.0 for fixed pier	a	0.5			
(7-4)	Expected rocking strength $.9aPce\left(\frac{L}{heff}\right)$	= Qce	255.0	kN		
	Masonry compressive strength Diagonal tension strength	fm	4.0	Мра		
	Vme = fdt in eq. (7-5) onl	y fdt	0.390	Мра		
	Vertical axial compressive stress	fa	0.029	Мра		
	Aspect ratio	(L / heff) =	5.67			

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Dining Wing Masonry Walls In Plane Across		

In-Plane	strength of walls and piers continued	Sheet No.:	21				
Ref:	Design					Output	
	Expected lateral strength of pier is lesser of:-						
(7-5)	Diagonal tenson stress						
	$Vdt = fdt.An\left(\frac{L}{heff}\right) \sqrt{1 + \frac{fa}{fdt}}$	=	QCL	7786.5	kN		
(7-6)	Toe compressive stress						
	$Vtc = aPcl\left(\frac{L}{heff}\right)\left(1 - \frac{fa}{0.7fm}\right)$	=	QCL	280.4	kN		
	The govening lateral force for this pier is Actural force on pier is			255.0 505.9	kN kN		
	% of NBS, proportion of NZS1170.5		%NBS	50	%		
			Mod	lerate ha	azard		

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113		63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Dining Wing Masonry Walls In Plane Along		

In-Plane	strength of walls and piers to FEMA URM seismic gu	Sheet No.:	22			
Ref:	Design	Output				
<u>kel:</u>	The following calculation follows the FEMA 273 guil of existing unreinforced masonry buildings (URM). T walls between window and door openings. Typica diagonal tension in the panel or toe compressive s shear or expected rocking strength can also limit t					
	Effective height and pier geometry may vary in	the same wa	all assemb	oly		
	Expected axial gravity force on pier Pier dimentions	Рсе	80	kN		
	Effective height of pier	heff	3.00	m		
	Pier length (net mortared length)	L	14.00	m		
	Pier thickness (net mortared width)	Tm	200	mm		
	Net mortared area					
	Average bed joint shear strength	Vto	1 00	Mna		
(7.1)	Expected shear strength	Vie	1.00	mpa		
(7-1)	$\frac{0.75\left(0.75vte + \frac{Pce}{An}\right)}{1.5}$	= Vme	0.389	Мра		
	Expected lateral strength is the lesser of -					
(7-3)	Bed-joint shear strength Vme x An	= QCE	1090.0	kN		
	\mathbf{a} = 0.5 for cantilever or 1.0 for fixed pier	а	0.5			
(7-4)	Expected rocking strength $\frac{.9aPce}{heff}$	= QCE	168.0	kN		
	Masonry compressive strength Diagonal tension strength	fm	4.0	Мра		
	Vme = fdt in eq. (7-5) onl	y fdt	0.389	Мра		
	Vertical axial compressive stress	fa	0.029	Мра		
	Aspect ratio	(L / heff) =	4.67			
	•				•	

))

55 DUNLOP ROAD, PO BOX 3315	Client:	Christchurch City Council	Ref:	1605 prelim
NAPIER, 4142, NEW ZEALAND	Project:	Mona Vale Homestead	Date:	23/6/11
P (06) 842 0111 F (06) 842 0113	-	63 Fendalton Road, Christchurch	BY:	GN
E <u>info@structuralconcepts.co.nz</u>	Subject:	Dining Wing Masonry Walls In Plane Along		

In-Plane	strength of walls and piers continued	Sheet No.:	23				
Ref:	Design					Output	
(7 5)	Expected lateral strength of pier is lesser of:-						
(7-5)	$Vdt = fdt.An \left(\frac{L}{heff}\right) \sqrt{1 + \frac{fa}{fdt}}$	=	QCL	5270.0	kN		
(7-6)	Toe compressive stress						
	$Vtc = aPcl\left(\frac{L}{heff}\right)\left(1 - \frac{fa}{0.7fm}\right)$	=	QCL	184.8	kN		
	The govening lateral force for this pier is Actural force on pier is			168.0 505.9	kN kN		
	% of NBS, proportion of NZS1170.5		%NBS	33	%		
			Moc	lerate ha	azard		