

Naval Point Detailed Site Investigation

Naval Point Detailed Site Investigation

Client: Christchurch City Council

ABN: N/A

Prepared by

AECOM New Zealand Limited

Level 2, 2 Hazeldean Road, Addington, Christchurch 8024, P O Box 710, Christchurch MC, Christchurch 8140, New Zealand T +64 3 966 6000 F +64 3 966 6001 www.aecom.com

10-Dec-2015

Job No.: 60444747

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM New Zealand LimitedAECOM New Zealand Limited. All rights reserved.

AECOMAECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOMAECOM. AECOMAECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOMAECOM's experience, having regard to assumptions that AECOMAECOM can reasonably be expected to make in accordance with sound professional principles. AECOMAECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety. AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document

Naval Point Detailed Site Investigation

Ref

60444747

Date

10-Dec-2015

Prepared by

Hannah Wright

Reviewed by

Rachael Larkin

Revision History

Revision	Revision Date	Details	Authorised		
			Name/Position	Signature	
001	09-Nov-2015		Rachael Larkin Associate Director Environmental Scientist		
Final	10-Dec-2015		Rachael Larkin Associate Director Environmental Scientist	PME.	

Table of Contents

1.0	Introduction				
	1.1	Purpose	and Objectives	1	
	1.2	Scope o	of Work	1	
2.0	Site Desc	ription		3	
	2.1	Site Hist	tory	3	
		2.1.1	Summary of Preliminary Site Investigation Report	3	
	2.2	Site Wal		3	
	2.3	Investiga	ation Locations	3	
3.0		ental Sett		5	
4.0			of Contamination	6	
	4.1	Contami	inants of Concern	6	
5.0		of Guidel		8	
6.0	Field Met			10	
0.0	6.1		Excavation	10	
	6.2	Soil San		10	
	0.2	6.2.1	Asbestos Sampling	10	
	6.3		water Well Installation	10	
	6.4		water Methodology	11	
7.0	Soil Resu		water Methodology	12	
7.0	7.1		oservations	12	
	7.1			12	
	1.2		Alytical Results		
		7.2.1	Hydrocarbons	12	
		7.2.2	Metals	13	
		7.2.3	Pentachlorophenol (PCP)	13	
		7.2.4	Organochlorine, Organonitro and phosphorus pesticides	13	
		7.2.5	Tributyl Tin	13	
		7.2.6	Asbestos	13	
8.0		ater Monit	•	14	
	8.1		water Results	14	
		8.1.1	Hydrocarbons	14	
		8.1.2	Metals	14	
		8.1.3	Pentachlorophenol (PCP)	14	
		8.1.4	Organochlorine, Organonitrogen and Organophosphorus Pesticides	14	
		8.1.5	Tributyl Tin	15	
9.0	Discussion	n		16	
10.0	Phase 2	Report Lin	mitations	17	
	10.1	Conclus	ion and Recommendations	17	
Annandi	. ^				
Appendix		1.4-4-4:-	de Currer Deport	^	
	пагагиоц	is materia	als Survey Report	Α	
Appendix	κВ				
		ocation M	1ap	В	
			•		
Appendix				_	
	Test Pit L	.ogs		С	
Appendix	x D				
рроа	Photogra	nhs		D	
	Thotogra	prio			
Appendix	ĸΕ				
	Soil Anal	ytical Res	ult Tables	Е	
Appendix	v F				
Appendix		oton, Doo	sult Tables for Soils	F	
	HIII Labol	alory Kes	sult Tables for Soils	Г	
Appendix	x G				
	Groundw	ater Analy	rtical Result Tables	G	

Appendix H

Hill Laboratory Result Sheets for Groundwater

Н

1

1.0 Introduction

Christchurch City Council (CCC) has proposed a new development at Naval Point in Lyttelton (Statement of Work Number – 1075-0001 - 24th of September 2015). The development would include a new cruise ship facility, a promenade and commercial development near the harbour edge. The current land use in these areas comprises of a sailing club, the Coastguard building, a sports field, boat storage areas, boat ramps and large areas of unpaved surfaces.

AECOM New Zealand Limited (AECOM) has been engaged by (CCC) to undertake a Detailed Site Investigation (DSI) of Naval Point, Lyttelton. This report presents the findings of the DSI and is subject to the limitations in Section 10 of this report.

1.1 **Purpose and Objectives**

The purpose of the DSI is to satisfy the requirements of the National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health, 2011 (NES), in particular the requirement to carry out a detailed site investigation on a property with known HAIL activities when a change in landuse is being proposed. The detailed site assessment will be carried out in accordance with the MfE Contaminated Land Management Guidelines No.5: Site investigation and analysis of soils (revised 2011).

The objective of this DSI is to satisfy the following requirements:

- Interpret environmental quality data in regards to potential risks to human health and / or the environment during excavation works for the proposed development; and
- Assess on-going risk to human health for continued use of the area following development.

1.2 Scope of Work

The initial part of this investigation included reviewing previous investigations and historical aerial photographs of the site. This review allowed the sampling locations for the detailed site investigation (DSI) to be selected such as to target the areas with potential contaminants of concern onsite.

Based on an investigation area of 75,000 m² and previous/current landuses, 30 locations were proposed for test pits. The following activities were undertaken for the field investigation:

- Copies of service plans were obtained via the beforeudig website, and directly from Orion, Rockgas, Christchurch City Council (CCC), and Environment Canterbury (ECan).
- Service clearance was undertaken by Underground Service Locations Ltd (USL) using a cable avoidance tool (CAT) and ground penetrating radar (GPR).
- The number of test pits were reduced from the proposed 30 test pits to 26 due to limited access onsite. The twenty six test pits were advanced to depths of up to 3.5 metres below ground level (m bgl). Soil samples were taken from the surface and at 0.5 m intervals until groundwater was encountered with an excavator.
- At each location an AECOM field representative completed soil logging, measured PID levels, and collected soil samples for testing for asbestos, pesticides, TBT, PCP, hydrocarbons and metals.
- At the end of each day, soil samples were packed and submitted to the appropriate laboratory (Precise Consulting and Laboratory Ltd for Asbestos and Hill Laboratories Ltd in Hamilton for pesticides, TBT, PCP, metals and hydrocarbon testing) for analysis.
- Eight prepacked groundwater monitoring wells were installed within selected test pit excavations. The groundwater monitoring well locations were selected to obtain representative assessment of groundwater quality beneath the site. Groundwater monitoring wells were installed by using a 50 mm prepacked gravel filter pack wells prepared by McMillans Drilling Limited.
- The eight groundwater wells were developed via purging a week prior to the groundwater sampling.
- Groundwater samples were undertaken from the eight groundwater wells. Samples were analysed for petroleum hydrocarbons, heavy metals, organochlorine pesticides, organonitro and organo phosphorus pesticides, tributyltin and pentachlorophenols by Hill Laboratories Ltd.

The scope of work also included a hazardous materials survey of the following buildings: the pavilion, the scout hall, toilet block, coastguard building and yacht club. Results are presented in a standalone report this is not discussed further in the body of this report (**Appendix A**).

2.0 Site Description

2.1 Site History

2.1.1 Summary of Preliminary Site Investigation Report

The site history was taken from the Preliminary Site Investigation (PSI) – ENGEO report, commissioned by CCC in January 2015. The information reviewed in this report included the following: aerial photographs, CCC property files, Listed Landuse Register Information, interviews with long serving staff who have worked onsite and historic reports. Please see Table 1 below for a timeline summary of the site from the information reported in the PSI.

Table 1 Timeline for potentially contaminating activities

Period	Summary of Potentially Activities Onsite
1920s - 1940s	The site was created by dredging marine sediments within an armoured rock wall.
1949 - 1965	Lyttelton Sports Field was established onsite. The remainder of the site was used to treat and store timber poles. It was surmised that these were for telephone poles or timber piles.
1970s and 1980s	The site had further filling occurring onsite. Treatment and storage of timber poles were ceased as storage and maintenance of boats increased. A business was present in the northwestern corner of the site for sometime after 1965 and before 1984.
1990s to the present day	The site has been consistently used for recreational purposes (boating and sports field) with some boat maintenance work being undertaken on part of the site.

The report identified several sources of contamination across the site including: a single underground storage tank (UST), surface oil stains, a small campfire area, old and new treated timber poles, covered stockpiles of unknown material, possible asbestos containing materials, future demolition of buildings and the possible risk of unearthing asbestos pipes during the development of the site.

The other potential risk to the site arises from the surrounding landuses, namely, the long term, bulk storage of petroleum products. Releases to the environment from these above ground storage tanks have occurred in the past and have potential to have caused petroleum hydrocarbon contamination of subsurface soils and groundwater beneath the Naval Point site

The highest risk areas identified in the report were the boat maintenance area and the sports field on the basis that heavy metals or pesticides maybe present on the surface of these sites. Exposure could occur via direct contact and /or ingestion of soil, or inhalation of dust.

2.2 Site Walkover

On the 16th of October 2015, a site walkover was undertaken prior to the field investigation, by three AECOM staff members and two CCC staff members. During this site walkover the location of the former marine wharf was identified and incorporated into the area of interest. The former marine wharf is located between the boat storage area and the sports field.

2.3 Investigation Locations

The site comprises several distinct areas which include: a sports field, an area where the debris from the former marine wharf has been stored, the yacht haul out area and the boat ramps, two boat yards, the area beside the coastguard building and the sailing club. The Table 2 presents a summary of these areas and legal descriptions covered by this stage of the work. Please see Figure 1 for the map of the test pit locations.

Table 2 Site address and legal description

Parcel ID	Site Description	Legal Description		Test Pit Numbers
3407164	Playing field	Lot 3 DP 11243	The Lyttelton Borough Council	ETP10, ETP11, ETP12, ETP14, ETP15, ETP16 and ETP17
3500498	Former Wharf Debris Storage Area	Lot 1 DP 80599	Lyttelton Port Company Limited	ETP13
	Private Boat Yard			ETP26
3523069	Eastern CCC Boat Yard	Lot 1 DP 72644	The Banks Peninsula Council	ETP23, ETP24, ETP25
	Western CCC Boat Yard			ETP07, ETP08 and ETP09
	Coastguard Building Area			ETP04, ETP05 and ETP06
	The point			ETP01, ETP02 and ETP03
	Haul Out Area			ETP18, ETP19, ETP20 and ETP21
	Sailing Club			ETP22

3.0 Environmental Setting

Table 3 summarises the key environmental information

Table 3 Description of the Environment

Item	Details	Details		
Zoning	BH - Boat Harbour and	BH - Boat Harbour and RV – Recreation Reserve		
Land Use	Current	Boat Harbour, Sailing Club and Recreation Reserve. Industrial ancillary associated activities with boat building, maintenance and storage.		
	Proposed	The proposed development will comprise the construction of a cruise ship dock, promenade with commercial development and a sailing club.		
Geology	reclaimed land known a Reclamation lies at an e	According to the Geological Map of the Christchurch area ¹ , the site is located on an area of reclaimed land known as the Lyttelton Harbour Reclamation. The Lyttelton Harbour Reclamation lies at an elevation of approximately 5 m above sea level. It comprises hydraulic fill derived from the Lyttleton Harbour and overlies marine deposits comprising		
Groundwater	Groundwater was encousurface.	untered in the test pits t	from depths of 2.5 metres below the ground	
Groundwater	Sensitive			
Sensitivity	The aquifer is not artesian or confined		Yes - The shallow groundwater unit underlying the site is not confined.	
	AND: The aquifer is expected to be less than 10 m below the potential suspected source of contamination;		Yes - Shallow groundwater is expected to be present at depths of less than 10 m.	
	AND: The aquifer is of a quand can yield water at a us area where extraction and be reasonably foreseen;	seful rate and is in an	No - Shallow groundwater is not currently abstracted for use within a 1km radius of the site. A confining layer is present between the shallow aquifer and the underlying usable aquifer.	
	OR: The source of contamination is less than 100 m from a sensitive water body.		Yes — The nearest marine surface water body is the harbour and the site is less than 100 m from it. The nearest fresh water surface water body is the Port of Lyttelton catchment (6,672,200 m²), this includes all the small streams across the valley between the boundary of Cass Bay and Lyttelton township to the west and the edge of the Lyttelton township to the east.	

¹ Forsyth, P.J., Barrell, D.J.A., Jongens, R. (Compilers) 2008. Geology of the Christchurch Area. Map number QM16 1:250,000 scale

4.0 Potential Sources of Contamination

The Environment Canterbury Listed Landuse Register (LLUR) identifies the following Hazardous Activities and Industries List (HAIL) landuses:

Table 4 Summary of LLUR sites

LLUR Site	Description from LLUR	HAIL Activity ²
26833	A timber yard was noted from ECAN aerial photographs (1965-1994) reviewed. A spill in 2014 released approximately 1244 million litres of jet fuel. The investigation consisted of the collection and analysis of 89 soil samples and 35 groundwater samples. Free product and a sheen was observed on the shallow gravel layer that overlies the reclamation fill. Reported petroleum hydrocarbon concentrations exceeded the excavation worker guideline values for TPH range C7 to C9 in two samples. A plume of dissolved phase petroleum was present in the shallow groundwater, primarily confined to preferential pathways and extended 70 metres downgradient of the main release area.	A18 – Wood treatment or preservation and bulk storage of treated timber.
28645	The sports turf was noted in the aerial photographs (1965-2011) reviewed.	A10 – Persistent pesticide bulk storage or use.
2939	Site was previously used for the storage of treated timber by the former Lyttelton Harbour Board. The timber was utilised for port maintenance. It is unknown if treated timber was held, but considering the end use of the timber it is considered likely (pre 1965 – pre 1994). Part of the site is leased to Stark Bros Limited and a 50,000 AGST, situated on a concrete pad and bunded in a steel bath bund, is present on the site. The tank contains used oil. The site also stores dry contaminated waste from the dry dock prior to its disposal. The waste is mixed with lime and is located on a concrete lined storage area. (1998 – present)	A17 – Storage tanks or drums for fuel, chemicals or liquid waste. A18 – Wood treatment or preservation and bulk storage of treated timber.

4.1 Contaminants of Concern

The Contaminants of Concern (COCs) of relevance to this site are based on the previous and current potentially hazardous activities on the site as identified in the above reports and conversations with CCC staff during a site walkover. The potential contaminants of concern associated with this site include biological hazards, total petroleum hydrocarbons (TPH), metals, polycyclic aromatic hydrocarbons (PAHs), semi volatile compounds, pentachlorophenol (PCP), tributyl tin (TBT), organonitro and organophosphorus pesticides (ONOP), organochlorine pesticides (OCP) and benzene, toluene, ethylbenzene and xylenes (BTEX). The COCs listed in Table 5 are based on the MfE HAIL classification system and should be used as a guide for any chemical investigations based on historical site activities.

Table 5 Contaminants of concern

HAIL Activity	HAIL Description	Contaminants of Concern	Analytes
A10	Persistent pesticide bulk storage or use.	Arsenic, lead, copper, mercury, wide range of organic compounds including acidic herbicides, organophosphates and organochlorines.	Heavy metals, ONOP and organochlorines.
A17	Storage tanks or drums	Hydrocarbons (including	TPH, BTEX, PAH, metals,

² Ministry for the Environment (2011), Hazardous Activities and Industries List (HAIL): October 2011.

Prepared for – Christchurch City Council – ABN: N/A

HAIL Activity	HAIL Description	Contaminants of Concern	Analytes
	for fuel, chemicals or liquid waste.	BTEX, polycylic aromatic hydrocarbons (PAHs) and solvents), metals, possible Volatile Organic Compounds (VOCs) and biological contaminants.	VOCs, bacteria and viruses.
A18	Wood treatment or preservation and bulk storage of treated timber.	Pentrachlorophenol (PCP), copper, arsenic, chromium, boron, PAHs, phenolics (creosote), antisapstain, organochlorine pesticides, fungicides and tributyltin (TBT).	PCP, heavy metals and TBT.
E1	Asbestos products manufacture or disposal including sites with buildings containing asbestos products known to be in a deteriorated condition.	Asbestos.	Asbestos.

5.0 Selection of Guidelines

The applicable guidelines used to assess the soil and groundwater results are shown in Table 6 below. The soil results have been assessed against the commercial/ industrial guidelines and recreational guidelines (where recreational guidelines are not available residential guidelines were utilised as a conservative estimation). The groundwater in this area is not used for potable supply therefore groundwater results have been assessed against the appropriate ecological guidelines.

ANZECC 90% marine water trigger level guidelines were utilised to assess the groundwater results. Lyttelton Harbour is considered to be a slightly to moderately disturbed ecosystem, the biological communities remain in a healthy condition and ecosystem integrity is largely retained. Environment Canterbury Class Coastal CR Water Lyttelton Harbour/Whakaraupo (West) guidelines were also used to assess the groundwater results. Class Coastal CR classification means that the water that is managed for contact recreation and for the maintenance of aquatic systems.

Table 6 Applicable Guidelines

Analytical Suite	Environmental Guideline Criteria Documents
Heavy metals	Resource Management – National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations 2011 (NES) - Recreational Soil Contaminant Standards (SCS)– proposed landuse - Commercial/Industrial Unpaved SCS– proposed land use Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC), 2000 ecological level of protection, 90% trigger value for marine water Environment Canterbury – Coastal Plan - Class Coastal CR Water Lyttelton Harbour/Whakaraupo (West) guidelines, 2011
TPH, BTEX and PAH (naphthalene and pyrene)	Ministry for the Environment 1999, updated 2011, Guidelines for the Management and Assessment of Petroleum Hydrocarbon Contaminated Sites in New Zealand (MfE 1999 Guidelines) - Soil type – sand or sandy silt - Commercial / Industrial –proposed landuse - Residential –potential future land use (conservatively chosen in the absence of a recreational guideline) - Tier I – All Pathways - Tier 1 – Groundwater - All Pathways
Organochlorine, Organonitro and Organophosphorus pesticides	Resource Management – National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations 2011 (NES) - Recreational Soil Contaminant Standards (SCS)– proposed landuse - Commercial/Industrial Unpaved SCS– proposed land use USEPA Regional Screening Table, November 2015, , residential and commercial landuse Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC), 2000 ecological level of protection, 90% trigger value for marine water Environment Canterbury – Coastal Plan - Class Coastal CR Water Lyttelton Harbour/Whakaraupo (West) guidelines, 2011
PAH – benzo(a)pyrene equivalent	Resource Management – National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations 2011 (NES) - Recreational Soil Contaminant Standards (SCS)– proposed landuse - Commercial/Industrial Unpaved SCS– proposed land use Tier 1 – Groundwater - All Pathways

Analytical Suite	Environmental Guideline Criteria Documents
Tributyl Tin	USEPA Regional Screening Table, November 2015, residential and commercial landuse Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC), 2000 ecological level of protection, 90% trigger value for marine water Environment Canterbury – Coastal Plan - Class Coastal CR Water Lyttelton Harbour/Whakaraupo (West) guidelines, 2011
Asbestos	Western Australian Department of Health (WA DoH) (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. - All site uses (friable asbestos in soils) - Parks, public open spaces – total % asbestos in soil
Background levels	Environment Canterbury Background Concentrations - Environment Canterbury 2006 Background Concentrations of selected trace elements in Canterbury Soils. - Soil type: Christchurch, Yellow Gley Earth.

6.0 Field Methodology

6.1 Test Pit Excavation

The field work was undertaken between the 19th and the 22nd of October 2015. The locations of subsurface utilities (power, gas, communications, water and drainage services) were identified prior to test pitting works through service plans and a service mark out, conducted by Underground Service Locators (USL) using ground penetrating radar (GPR) and a cable avoidance tool (CAT).

A total of 26 test pits were advanced to depths of up to 3.5 metres below ground level (m bgl) by Scope using a 3-tonne excavator. In eight of the 26 test pits groundwater wells were installed after the logging and soil sampling was completed. Further details of the groundwater installation, methodology and sampling are outlined in Section 6.4 and 6.5 below.

6.2 Soil Sampling

Soil samples were collected in accordance with the methodology set out within the MfE Contaminated Land Management Guideline No. 5 (CLMG No. 5).

Soil samples were collected from the excavator bucket into laboratory supplied sample containers. Following collection, the soil samples were submitted to Hill Laboratories for analysis under AECOM Chain of Custody (CoC) documentation. Soil samples were analysed for total petroleum hydrocarbons (TPH), tributyl tin (TBT), pentachlorophenol (PCP), Organochlorine pesticides (OCP), Organonitrogen and Phosphorus pesticides (ONOP), benzene toluene, ethylbenzene, and total xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH) and heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc). The need for BTEX and PAH testing was determined on receipt of the TPH results.

A figure showing test pit locations is attached in **Appendix B**. Test pit logs are presented in **Appendix C**. Photographs are attached in **Appendix D**.

6.2.1 Asbestos Sampling

Asbestos samples were collected from each test pit in accordance with the methodology outlined with in the Western Australian Guidelines₃.

To collect the asbestos sample, a 10 L container of soil was collected from the excavator bucket and weighed. The soil sample was screened through a 7 mm sieve to separate the soil fractions, and a composite soil subsample was collected from the < 7 mm soil fraction and weighed.

Any suspected asbestos containing material (ACM) identified in the > 7 mm fraction was collected as a separate sample.

Soil subsamples and ACM samples were submitted to Precise Consulting and Laboratory Ltd in Christchurch under AECOM CoC documentation. Soil subsamples were analysed quantitatively for asbestos in soil and ACM samples were analysed qualitatively for presence / absence of asbestos.

6.3 Groundwater Well Installation

The groundwater wells were installed in the test pits after the completion of the geological logging and soil sampling. Groundwater wells were installed in eight of the 26 test pits. The groundwater monitoring well locations were selected to allow for representative assessment of groundwater quality beneath the site. The wells were completed offsite by McMillans Drilling and composed of PVC 50 mm prepacked gravel filter pack wells that were prepared and then transported to the site. The wells were 4 metres in length and screened for 3 metres, which allowed for 1 metre of stick up of the well once completed. The wells were then installed using a Mighty Gripper to hold the piezometer approximately vertical when the excavator is reinstating the test pits and compacting around the wells.

A figure showing the monitoring well locations is attached in Appendix B.

³ Western Australian Department of Health (WA DoH) (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.

6.4 Groundwater Methodology

All groundwater samples were collected on 10th and 11th of November 2015 from the monitoring wells using the following sampling method:

- The depth to groundwater was measured using a dip meter. Measurements were taken from the top of the well casing.
- The wells were purged by removal of approximately three well volumes using a low flow peristatic pump. The pH, temperature and electrical conductivity of the purged water was measured with a multiparameter meter and recorded. The readings were considered to be stabilised when within 10% of subsequent readings. Samples were collected from the wells once the purging process was completed, and placed in laboratory supplied bottles and stored chilled.
- The pump was decontaminated between wells with DECON 90, and new tubing used in each well to ensure cross contamination during sampling did not occur.
- The depth to groundwater was measured again to confirm water level recovery.
- A fresh pair of nitrile gloves was used by the AECOM field staff for each monitoring well.

All samples were couriered to Hill Laboratories in accordance with standard AECOM procedures. Groundwater samples were for analysed for a selection of the following analyses: total petroleum hydrocarbons (TPH), tributyl tin (TBT), pentachlorophenol (PCP), Organochlorine pesticides (OCP), Organonitrogen and Phosphorus pesticides (ONOP), benzene toluene, ethylbenzene, and total xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH) and heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc).

7.0 Soil Results

7.1 Field Observations

During the test pit excavation works, fill materials were observed in the majority of test pits in the shallow soils between 0.3 metres below ground surface to 0.7 metres below the ground surface. In some test pits fill was observed down to 1.5 m bgl. Below this depth the natural geology of the site was interbedded marine silts and sands. Photographs are attached as **Appendix D**.

Table 6 summarises the observations of the test pits that contained fill on the site. Test pit logs are presented as **Appendix C**.

Table 7 Contamination/ Geological summaries

Location	Fill (m bgl)	Base of pit (m bgl)	Contamination / fill observed
ETP01	1.5	2.3	Moderate hydrocarbon odour, possible coal tar(1.5)
ETP03	0-0.7	3.3	Fragments of brick and tree roots.
ETP05	0-1.5	3	Fragments of debris and brick (0-0.7). Fragments of paint cans were found (0.7-1). Chunks of concrete were intermixed with dark grey silt (1-1.5).
ETP07	0.2-0.7	3	Some brick, concrete and wood (0.2). Plastic sheeting (0.7)
ETP08	0.7	2.9	Bricks (0.7)
ETP09	0-0.6	3.1	Brick (0-0.6)
ETP17	0-0.4, 2	3	Fragments of brick (0.2). Coal fragments. (2)
ETP19	0-1	3	Some ceramic, some brick and some concrete.
ETP20	1.2	3.2	Concrete fragments, some wood and steel piping.
ETP21	0-0.5	1.7	Brick fragments, steel, rope and glass (0-0.5). Large concrete fragments (0.5).
ETP22	0.5-1.1	2.8	Brick fragments, steel pieces, cement sheeting, glass and general waste material. (0.5-1.1)
ETP25	0.2	3	Brick and some metal wire (0.5)
ETP26	0.3	2	Some brick and wood (0.3)

7.2 Soil Analytical Results

Appendix E presents results tables for metals and tributyl tin (Table 7), Hydrocarbons (Table 8), Pentachlorophenol (PCP) and Organochlorine pesticides (Table 9), Organonitro and Organophosphorus pesticides (Table 10) and Asbestos (Table 11). Detections only have been tabulated. The laboratory results as received from the laboratory and the CoC information are presented in **Appendix F**.

7.2.1 Hydrocarbons

BTEX concentrations were not detected above the method detection limit (MDL) in any of the soil samples analysed from the site.

TPH concentrations were detected above MDL in 11 of the 37 soil samples analysed from site. The sample from ETP23_1.2 contained a concentration of C_{10} - C_{14} TPH of 1,040 mg/kg which exceeds the MfE guideline for residential landuse (Sandy Silt 1 m -4 m) (which has been used as a conservative guideline in the absence of a

recreational landuse value). If it is also conservatively assumed that all of the TPH in this C_{10} - C_{14} band is composed of naphthalene then the indoor air exposure soil acceptance criteria is exceeded. Note: this assumption cannot be verified as follow on PAH analysis was not completed for this sample.

Sample ETP23_1.2 also contained the highest concentration of hydrocarbon, namely 67,000 mg/kg of C_{15} - C_{36} TPH. TPH chromatograms for this sample are consistent with a diesel or potentially weathered bitumen signature. There is no guideline available for the C_{15} - C_{36} TPH band.

PAHs concentrations were detected above MDL in the one sample analysed from the site. The result for sample ETP17_0.2 complied with the NES guidelines for recreational and commercial landuse for benzo(a)pyrene equivalents.

7.2.2 Metals

The sample from test pit ETP22 0.6-0.7 had a lead concentration of 11,700 g/m³ which exceeds the NES standard for recreational landuse and commercial landuse.

All 37 samples collected and analysed for heavy metals were above the published Environment Canterbury background levels.

Apart from the lead concentration detected in sample ETP22 0.6-0.7, all metal results complied with the relevant NES-SCS for commercial and recreational land use. Note: four shallow samples () have copper results which exceed the concentration likely to inhibit plant growth.

7.2.3 Pentachlorophenol (PCP)

Four samples collected and analysed for pentachlorophenol (PCP) had results which were below the limit of detection for the laboratory and therefore complied with the relevant NES-SCS for commercial and recreational land use.

7.2.4 Organochlorine, Organonitro and phosphorus pesticides

All seven samples analysed for Organochlorine, Organonitro and Organophosphorus pesticides had results which were below the limit of detection for the laboratory, with the exception of those noted below.

7.2.4.1 Diuron

Diuron was detected above the MDL in two of the seven samples analysed from the site. These included samples from the following test pits: ETP10 0.2-0.3 and ETP17 0.2, which are both on the recreational ground.All the Diuron results obtained from samples collected from the detailed site investigation complied with the relevant USEPA for commercial and residential land use.

7.2.4.2 DDT

DDT was detected above the MDL in four of the seven samples analysed from the site. These included samples from the following test pits: ETP10 0.2-0.3, ETP11 0.2-0.3, ETP16 0.2, ETP17 0.2 which are all on the recreational ground. All the DDT results obtained from samples collected from the detailed site investigation complied with the relevant NES-SCS for commercial and recreational land use.

7.2.5 Tributyl Tin

Tributyl Tin was detected in three of the five samples analysed from the site. These included samples from the following test pits: ETP07 0.1-0.2, ETP08 0.2-0.3 and ETP26 0.8-0.9 which are all in historical boat maintenance areas. All the Tributyl Tin results obtained from samples collected from the detailed site investigation complied with the relevant USEPA for commercial and residential land use.

7.2.6 Asbestos

Asbestos was detected at trace levels in five samples: ETP07_0.3-0.5_SV, ETP09_0.1-0.3_SV, ETP22_0.2-0.4_SV, ETP22_0.6-0.8_SV, and ETP23_0.2-0.4_SV. Asbestos concentrations in sample ETP 22_0.6-0.8 exceeded the Western Australian guidelines for asbestos contaminated soil.

8.0 Groundwater Monitoring

Groundwater monitoring was undertaken on the eight monitoring wells that were installed at Naval Point as part of this DSI.

8.1 Groundwater Results

Appendix G presents results tables for metals and tributyl tin (Table 12), hydrocarbons (Table 13) and Pentachlorophenol (PCP) and pesticides (Table 14). Detections only have been tabulated. The laboratory results as received from the laboratory and the CoC information are presented in **Appendix H**.

8.1.1 Hydrocarbons

Eight groundwater samples were analysed for TPH and one sample was analysed for BTEX. Concentrations of TPH and BTEX were not detected above MDL in any of the samples analysed.

Three groundwater samples were analysed for PAHs (TP5, TP10 and TP20). Naphthalene was detected above MDL in two samples (TP5 and TP20), however, both results complied with the guideline. No other PAHs were detected above MDL in these samples.

8.1.2 Metals

Eight groundwater samples were analysed for total recoverable metals. All metals were detected above MDL in water sampled from test pits TP15, TP20, and TP03. The highest total metal concentrations were reported in groundwater sampled from TP3.

Total Recoverable Arsenic concentrations were detected above MDL in all samples. One groundwater result (sample TP05) exceeded the ECAN Class Coastal CR Water guideline.

Total Recoverable Cadmium concentrations were detected above MDL in three of the eight samples. One groundwater result (sample TP03) exceeded the ECAN Class Coastal CR Water guideline.

Total Recoverable Chromium was detected above the MDL in five of the eight samples. Two of these groundwater samples (TP12 and TP15) had results which exceeded the ANZECC 90% trigger value for marine water.

Total Recoverable Copper concentrations were detected above MDL in all samples. The concentrations of copper detected in all eight groundwater samples exceeded the ANZECC 90% trigger value for marine water and the ECAN Class Coastal CR Water guideline.

Total Recoverable Lead was detected above the MDL in seven of the eight groundwater samples. Four groundwater samples (TP03, TP12, TP15, TP20) had results which exceeded the ANZECC 90% trigger value for marine water and the ECAN Class Coastal CR Water guideline.

Total Recoverable Nickel concentrations were detected above MDL in five of the eight samples. Three groundwater samples (TP03, TP12, TP15) had results which exceeded the ECAN Class Coastal CR Water guideline

Total Recoverable Zinc was detected above the MDL in six of the eight groundwater samples. Four samples (TP03, TP12, TP15 and TP20) had results which exceeded the ANZECC 90% trigger value for marine water and the ECAN Class Coastal CR Water guideline.

All other samples tested for heavy metals complied with the ANZECC 90% trigger value for marine water.

8.1.3 Pentachlorophenol (PCP)

Two groundwater samples were analysed for SVOCs including PCP. PCP concentrations were not detected above the MDL in either of these samples and complied with the ANZECC 90% trigger value for marine water. No other SVOCs were detected about the MDL.

8.1.4 Organochlorine, Organonitrogen and Organophosphorus Pesticides

Three groundwater samples were analysed for Organochlorine Pesticides, and OrganoNitrogen and Phosphorus pesticides. Only one sample (TP10) contained a detectable concentration of these compounds, namely Diuron.

There is no guideline for Diuron in the ANZECC guidelines, therefore the USEPA guideline for protection of groundwater was utilised. The Diuron result complied with the USEPA guideline.

8.1.5 Tributyl Tin

Two groundwater samples were analysed for Tributyl Tin. Only one of these, TP05, contained concentrations of Tributyl Tin above the MDL. The concentration of Tributyl Tin in this sample exceeded the ANZECC 90% trigger values for marine water.

9.0 Discussion

Fill materials were observed in the majority of test pits in the shallow soils between 0.3 metres below ground surface to 0.7 metres below the ground surface. Several test pits excavated as part of this DSI revealed fill and debris to a depth of 1.5 m bgl. Not-withstanding the potential contaminant and geotechnical limitations of the fill material, it also poses a risk of physical harm to future users of the site in situations where sharps etc may make their way to the surface. The physical hazards within the test pits may need to be isolated or removed if the end landuse is recreational.

The soil results from the detailed site investigation showed elevated concentrations of heavy metals, heavy end hydrocarbons with two exceedances of guidelines. The sample from test pit ETP22 0.6-0.7m had a lead concentration of 11,700 g/m³ which exceeds the NES-SCS for recreational and commercial landuse. One sample (ETP23 1.2) has a concentration of 1,040 mg/kg which exceeded the C₁₀-C₁₄ MfE guidelines for residential landuse (which has been used to conservatively estimate the recreational guideline) for 1m-4m of Sandy Silt. There is potential for this sample to also contain concentrations of volatiles (PAHs) which exceed the indoor air exposure soil acceptance criteria. The heavy metal and TPH results are reflective of the wide spread observations of fill, which site history information indicates is likely to have occurred in a largely uncontrolled manner.

Results for soil sampled from Test pit 22 exceeded the Western Australian guidelines for asbestos contaminated soil.

Some areas of the site contain contaminants which exceed recreational and commercial landuse soil acceptance criteria or the Western Australian guidelines for asbestos, and are therefore, depending on the landuse, likely to require removal (following delineation) and validation sampling. Removed soil and fill material will need to be disposed of as contaminated material to an appropriate licensed disposal facility. Further sampling of the material may be required by the disposal facility, for example, Kate Valley Landfill requires Toxicity Characteristic Leaching Procedures (TCLP) to be carried out.

It should be noted that owing to the distance between test pits, the presence of contaminants including asbestos above guidelines in other areas of the site cannot be excluded.

The contaminants detected in this DSI also pose a risk to human health of the workers during the development of the site and the future workers involved in excavation and maintenance activities. It is recommended that a contaminated materials management plan is prepared for any proposed development and future use of the site to ensure that appropriate health, safety and environmental protections are implemented.

Note: On the basis of the results of this DSI a NES Consent is likely to be required for earthworks on the site or changes of landuse.

Groundwater samples taken from several of the monitoring bores installed on-site, contained metal concentrations that exceeded the ANZECC 90% trigger value for marine water and/or the Class Coastal CR Water. Given the results of the soil sampling and the evidence of widespread fill on the site, the groundwater results are not unexpected. It is likely that a passive discharge permit from Environment Canterbury will be required on the basis that the exceedances of the groundwater in comparison with the ANZECC guidelines and the Class Coastal CR guidelines and the discharge of this groundwater to the marine environment. It should be noted that sealing the site will reduce rainfall percolating through the fill and contaminated soil beneath the site, however, shallow groundwater will still potentially be in contact with these materials and result in the discharge of contaminants to seawater.

10.0 Phase 2 Report Limitations

10.1 Conclusion and Recommendations

This conclusion and all information in this Report is provided strictly in accordance with and subject to the following limitations and recommendations:

- a) This Report has been prepared for the sole benefit of Christchurch City Council.
- b) Except as required by law, no third party may use or rely on, this Report unless otherwise agreed by AECOM in writing. Where such agreement is provided, AECOM will provide a letter of reliance to the agreed third party in the form required by AECOM.
- c) This Report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by AECOM for use of any part of this Report in any other context.
- d) This conclusion is based solely on the information and findings contained in this Report.
- e) This conclusion is based solely on the scope of work agreed between AECOM and Christchurch City Council and described in Section 1 ("Scope of Works") of this Report.
- f) This Report is dated 10/12/2015 and is based on the conditions encountered during the site investigations conducted, and information reviewed, from 5/11/2015 to 10/12/2015. AECOM accepts no responsibility for any events arising from any changes in site conditions or in the information reviewed that have occurred after the completion of the site investigations.
- g) The investigations carried out for the purposes of the Report have been undertaken, and the Report has been prepared, in accordance with normal prudent practice and by reference to applicable environmental regulatory authority and industry standards, guidelines and assessment criteria in existence at the date of this Report.
- h) Where this Report indicates that information has been provided to AECOM by third parties, AECOM has made no independent verification of this information except as expressly stated in the Report. AECOM assumes no liability for any inaccuracies in or omissions to that information.
- i) AECOM has tested only for those chemicals specifically referred to in this Report. AECOM makes no statement or representation as to the existence (or otherwise) of any other chemicals.
- j) Except as otherwise specifically stated in this Report, AECOM makes no warranty or representation as to the presence or otherwise of asbestos and/or asbestos containing materials ("ACM") on the site. If fill has been imported on to the site at any time, or if any buildings constructed prior to 1970 have been demolished on the site or materials from such buildings disposed of on the site, the site may contain asbestos or ACM. Without limiting the generality of sub-clauses (h) and (m), even if asbestos was tested for and those test results did not reveal the presence of asbestos at specific points of sampling, asbestos may still be present at the site if fill has been imported at any time, or if any buildings constructed prior to 1970 have been demolished on the site or materials from such buildings disposed of on the site.
- k) Investigations have been undertaken into off-site conditions, as specified in Section 6 and AECOM makes no statement as to whether:
 - 1) any adjoining sites may have been impacted by contamination or other conditions originating from this site or from any other source; and/or
 - 2) any contamination originating from adjoining sites has or may have an impact on the site itself.]
- Investigations undertaken in respect of this Report are constrained by the particular site conditions, such as
 the location of buildings, services and vegetation. As a result, not all relevant site features and contamination
 may have been identified in this Report.
- m) Subsurface conditions can vary across a particular site and cannot be exhaustively defined by the investigations described in this Report. It is unlikely therefore that the results and estimations expressed in this Report will represent conditions at any location removed from the specific points of sampling.

- n) A site which appears to be unaffected by contamination at the time the Report was prepared may later, due to natural phenomena or human intervention, become contaminated.
- Except as specifically stated above, AECOM makes no warranty, statement or representation of any kind concerning the suitability of the site for any purpose or the permissibility of any use, development or redevelopment of the site.
- Disc, development or re-development of the site for any purpose may require planning and other approvals and, in some cases, environmental regulatory authority approval. AECOM offers no opinion as to whether the current use has any or all approvals required, is operating in accordance with any approvals, the likelihood of obtaining any approvals for development or redevelopment of the site, or the conditions and obligations which such approvals may impose, which may include the requirement for additional environmental works.
- q) AECOM makes no determination or recommendation regarding a decision to provide or not to provide financing with respect to the site.
- r) The ongoing use of the site and/or the use of the site for any different purpose may require the owner/user to manage and/or remediate site conditions, such as contamination and other conditions, including but not limited to conditions referred to in this Report.
- s) To the extent permitted by law, AECOM expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this Report. AECOM does not admit that any action, liability or claim may exist or be available to any third party.
- t) Except as specifically stated in this section, AECOM does not authorise the use of this Report by any third party.
- u) It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

Appendix A

Hazardous Materials Survey Report

Naval Point Asbestos Survey - November 2015

Naval Point Asbestos Survey - November 2015

Client: Christchurch City Council

Co No.: N/A

Prepared by

AECOM New Zealand Limited

Level 2, 2 Hazeldean Road, Addington, Christchurch 8024, P O Box 710, Christchurch MC, Christchurch 8140, New Zealand T +64 3 966 6000 F +64 3 966 6001 www.aecom.com

11-Dec-2015

Job No.: 60444747

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM New Zealand Limited (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Naval Point Asbestos Survey - November 2015

Ref 60444747

Date 11-Dec-2015

Prepared by Alan Spooner

Reviewed by Jo Walters

Revision History

Revision	Revision Date	Details	Authorised	
			Name/Position	Signature
A	11 Dec 2015	Final	Anna Lukey Principal Environmental Scientist	A

This page has been left blank intentionally.

Table of Contents

Execut	ive Summary	1	1				
1.0	Introducti	ion	2				
2.0	Site Desc	cription	3				
3.0	Nature ar	nd Extent of Survey	4				
	3.1	General	4				
	3.2	Asbestos-Containing Materials	4				
	3.3	Inaccessible Areas	4				
4.0	Results		5				
	4.1	Naval Point Yacht Club	5				
	4.2	Sports Pavilion	5				
	4.3	Scout Hall	6				
	4.4	Coastguard	6				
5.0	Recomm	endations	7				
6.0	Hazard C	Control	8				
	6.1	Asbestos Removal	8				
	6.2	Asbestos Enclosure	8				
	6.3	Asbestos Encapsulation or Sealing	9				
	6.4	Friable and Bonded Asbestos-Containing Material Removal Guidelines	9				
7.0	Reference	es	12				
8.0	Limitation	ns	12				
Appen							
	Photogra	phic Log	Α				
Appen	dix B						
	Survey R	Results	В				
Appen	dix C						
	Asbestos	Register	С				
Appen	dix D						
	Site Plans	S	D				
Appen	dix E						
		ible Areas	Е				
Appen	dix F						
	Asbestos	Risk Assessment Methodology	F				
Appen	dix G						
	Laboratory Analysis Results G						

1

Executive Summary

AECOM New Zealand Ltd (AECOM) was commissioned by Christchurch City Council (CCC), to conduct an asbestos survey and develop an asbestos register for the following five buildings (collectively labelled "the Sites located at Naval Point, Lyttelton:

- Yacht Club;
- Coastguard Building
- Scout Hall
- Sports Pavilion; and
- Toilet Block.

In addition to these buildings, associated structures were also inspected. These included the boat storage and boat yard sheds associated with the yacht club, as well as two storage sheds associated with the scout hall.

The objective of the survey was to, as far as practicable, locate, identify and assess visually accessible asbestos-containing materials (ACM) present in the areas nominated for inspection and to present the information collected in a way that allows the duty holder to manage the risks arising from those materials in order to meet owner/employer obligations under the New Zealand *Health and Safety in Employment (Asbestos) Regulations* 1998 and the New Zealand *Health and Safety in Employment Act* 1992. Additionally, the *Guidelines for the Management and Removal of Asbestos* produced by the New Zealand Occupational Safety and Health Service of the Department of Labour (DoL) (1995, revised 1999) and the *Interim guidance for work involving asbestos* (WorkSafe NZ, 2015) were used. These guidelines were considered in our assessment of the current risk level of asbestos exposure at the Sites.

No ACM were identified has having a high risk.

The Yacht Club contains asbestos fibre cement sheeting which was identified during the survey to be in a fair condition, as some areas were observed to be broken. It is recommended broken or damaged areas be encapsulated with an appropriate sealant to minimise risk of fibre release.

All ACM identified in this survey should be labelled as asbestos containing and maintained in a good condition with annual inspections to assess its condition.

The inaccessible areas identified in Section 3.3 and Appendix E should be treated as containing ACM until confirmed otherwise by a competent person.

Where ACM has been identified (through sampling or visually assumed), appropriate risk management should be implemented to ensure that the risks are adequately controlled. Risk management of asbestos materials identified may range from their complete removal to periodic inspection and review of the risks posed by materials left in situ

If any of the inspected areas that contain ACM are to undergo renovations or demolition, the asbestos containing materials identified should be removed prior to the commencement of demolition activities on Site.

Inaccessible areas should be treated as containing asbestos containing materials until confirmed otherwise.

No ACM were identified as potentially high risk materials based on the visual observations made on the condition, type and location of ACM.

This report presents the findings of a survey completed between 29 and 30 October 2015 and includes a Photographic Log (Appendix A), Full Survey Results (Appendix B), Asbestos Containing Materials/Building Register (Appendix C), Site Plans (Appendix D), Inaccessible Areas (Appendix E) an asbestos risk assessment as described in Appendix F and Laboratory Results (Appendix G).

This ACM Register is not a definitive description of all asbestos containing materials present in the area(s) of investigation.

THIS REPORT SHOULD BE READ IN ITS ENTIRETY.

1.0 Introduction

AECOM New Zealand Ltd (AECOM) was commissioned by Christchurch City Council (CCC), to conduct an asbestos survey and develop an asbestos register for the following five buildings (collectively labelled "the Sites located at Naval Point, Lyttelton:

- Yacht Club:
- Coastguard Building
- Scout Hall
- Sports Pavilion; and
- Toilet Block.

In addition to these buildings, associated structures were also inspected. These included the boat storage and boat yard sheds associated with the yacht club, as well as two storage sheds associated with the scout hall.

The objective of the survey was to, as far as practicable, locate, identify and assess visually accessible asbestos-containing materials (ACM) present in the areas nominated for inspection and to present the information collected in a way that allows the duty holder to manage the risks arising from those materials in order to meet owner / employer obligations under the New Zealand Health and Safety in Employment (Asbestos) Regulations 1998 and the New Zealand Health and Safety in Employment Act 1992. Additionally, the Guidelines for the Management and Removal of Asbestos produced by the New Zealand Occupational Safety and Health Service of the Department of Labour (DoL) (1995, revised 1999) and the Interim guidance for work involving asbestos (WorkSafe NZ, 2015) were used. These guidelines were considered in our assessment of the current risk level of asbestos exposure at the Sites.

This report presents the findings of a survey completed between 4th and 17th November 2015 and includes a Photographic Log (Appendix A), Full Survey Results (Appendix B), Asbestos Containing Materials/Building Register (Appendix C), Site Plans (Appendix D), Inaccessible Areas (Appendix E) an asbestos risk assessment as described in Appendix F and Laboratory Results (Appendix G).

2.0 Site Description

The description of the buildings and auxiliaries located at the Sites is outlined in Table 2 below.

Table 1 Property Details

Item		Details						
Site Name		Naval Point						
Site Address	;	Charlotte Jane Quay, Lyttelton.						
Date of Surve	еу	4 th – 17 th November 2015						
Site	Site Buildings	Description	Construction Date	Activities				
Yacht Club	Clubrooms	Two storey building consisting of concrete block, "hardiflex" exterior cladding, aluminium windows and a colour steel roof.	Approx. 1950's with later additions	Used for training activities, functions, administration and sports meetings.				
	Rescue boat shed	Single storey concrete block shed with a colour steel roof. Unknown		Storage of rescue boats, windsurfers and small sailing dinghy's.				
Boat yard Tin Shed shed		Tin Shed	Approx.1990's	Storage of outboard motors, stored boat equipment.				
Scout Hall	Scout hall building	Two storey building consisting of concrete block, "hardiflex" exterior cladding, aluminium windows and a colour steel roof.	Approx .1990's	Training activities				
	Storage shed	Foam core construction	Unknown	Storage				
	Weatherboard storage shed	Weatherboard construction with tin roof.	Unknown	Storage				
Toilet block		Single level concrete block structure	Unknown	Public toilet block				
Coastguard b	uilding	Two storey building consisting of weatherboards and a colour steel roof.	Approx.1980's	Training activities				
Pavilion		Pipe network and vessels which feed into the load out bay	Approx.1980's	Used for sporting events				

An Asbestos Register has been created where asbestos was found for each of the areas identified above (Appendix C).

3.0 Nature and Extent of Survey

3.1 General

The purpose of the survey was to locate, identify and document visually accessible asbestos containing materials (ACM). Including the following:

- a) A visual inspection was undertaken of the internal and external construction materials and components within the area(s) of investigation, to identify and locate visible above ground, accessible ACM.
- Areas which were not subject to or inaccessible during the survey are documented in Section 3.3 or in Appendix C
- c) Materials identified visually were referenced in the register as asbestos (visual);
- Accessible materials suspected of containing asbestos and that were visually assumed to be asbestos were sampled. Samples of suspected ACM were forwarded to a laboratory accredited by International Accreditation New Zealand (IANZ) for asbestos bulk sample analysis (Hill Laboratories);
- e) Samples were collected from discrete locations without damaging the integrity of the material. Samples were not taken from live electrical areas as the Site had not been electrically isolated. Comments regarding inaccessible materials are provided in Section 3.3 or in Appendix C.
- f) AECOM did not access high level areas (above the reach of a step ladder) unless provision was made by the client for safe access. High level areas may be presumed to contain asbestos containing materials based on the surveyor's visual assessment and experience.
- g) Suspected ACM was photographed where possible; and
- h) This report was prepared, detailing the location, condition and type of ACM detected. The areas not accessible due to access restrictions are detailed in Section 3.3 or in Appendix C.

3.2 Asbestos-Containing Materials

Where samples of materials suspected of containing asbestos were identified, these were collected and sent for analysis to an IANZ accredited laboratory (Hill Laboratories). The samples were examined using a stereo microscope and selected fibres were further examined using polarised light microscopy supplemented with dispersion staining.

Sampling is not always possible due to a number of factors, which might include a lack of accessibility, closed pipe network or the risk of causing asbestos contamination.

Where sampling was not possible, a determination was reasonably made as to the presence or absence of asbestos. This determination was based on factors such as the age, physical appearance or fixing method (nail and screw heads, cover strips or cover battens). Additionally, a determination might be made by inference from the sample analysis results of similar materials sampled during the survey.

3.3 Inaccessible Areas

No access was available to the following areas at the time of inspection:

- The site was electrically active during this survey. Consequently no access was made to electrical cabinets, equipment and or other areas where there was a potential electrical hazard.
- Confined spaces
- Locked cupboards and rooms.
- Underground services and confined spaces

For the purposes of risk management it is recommended that areas where access was not possible should also be assumed to contain asbestos unless accessed and inspected by a competent person. Materials suspected of containing asbestos should be assumed to contain asbestos unless analysed and proven otherwise.

4.0 Results

4.1 **Naval Point Yacht Club**

The asbestos containing materials listed in Appendix C (Yacht Club) were identified as low risk. The ACM identified during the survey are summarised in Table 2 below. A site plan is attached in Appendix D (Yacht Club) that identifies areas sampled with areas identified as containing asbestos.

Table 2 Summary of ACM - Yacht club

Yacht Club						
Room / Area	Item	Register ID	Risk Rating	Photo.	Recommendations	
Upstairs function room	Electrical backing board	NAVALYC-6	Low	27	Label as containing asbestos and maintain in a good condition. Reinspect every 12 months.	
Upstairs hallway	Wall lining	NAVALYC-4 NAVALYC-5	Low	22-23	Label as containing asbestos and maintain in a good condition. Reinspect every 12 months.	
Downstairs hallway by entrance	Electrical backing board	NAVALYC-3	Low	21	Label as containing asbestos and maintain in a good condition. Reinspect every 12 months.	
	Wall lining	NAVALYC-2	Low	20	Label as containing asbestos and maintain in a good condition. Reinspect every 12 months.	
External SW corner of building	Electrical backing board	NAVALYC-7	Low	36	Label as containing asbestos and maintain in a good condition. Reinspect every 12 months.	

4.2 **Sports Pavilion**

The asbestos containing materials listed in Appendix C (Pavilion) were identified as low risk. Materials identified during the survey are summarised in Table 3 below. A site plan is attached in Appendix D (Pavilion) that identifies areas sampled with areas identified containing asbestos.

Table 3 Summary of ACM - Pavilion

Pavilion					
Room / Area	Item	Register ID	Risk Rating	Photo.	Recommendations
Entrance	Electrical backing board	NAVALPV-1	Low	42	Label as containing asbestos and maintain in a good condition. Re-inspect every 12 months.
Eastern side changing room	Electrical backing board	NAVALPV-2	Low	43	Label as containing asbestos and maintain in a good condition. Re-inspect every 12 months.

4.3 Scout Hall

The asbestos containing materials listed in Appendix C (Scout Hall) were identified as low risk. Materials identified during the survey are summarised in Table 4 below. A site plan is attached in Appendix D (Scout Hall) that identifies areas sampled with areas identified containing asbestos.

Table 4 Summary of ACM - Scout Hall

Scout Hall						
Room / Area	Item	Register ID	Risk Rating	Photo	Recommendations	
Weatherboard	Electrical	NAVALSC1	Low	45	Label and maintain in a good condition.	
storage shed	backing				Re-inspect every 12 months.	
Inside behind	board					
door						

4.4 Coastguard

The asbestos containing materials listed in Appendix C (Coastguard) were identified as low risk. Materials identified during the survey are summarised in Table 5 below. A site plan is attached in Appendix D (Coastguard) that identifies areas sampled with areas identified containing asbestos.

Table 5 Summary of ACM - Coastguard

Coastguard						
Room / Area	Item	Register ID	Risk Rating	Photo	Recommendations	
Garage west wall	Electrical backing board	NAVALCG-1	Low	50	Unable to access to sample, assume asbestos containing unless proven otherwise.	

A Photographic log is presented in Appendix A, The survey results are presented in Appendix B. The asbestos register identifying all asbestos containing materials identified (sampled and assumed) during the survey is detailed in Appendix C.

During the survey no asbestos materials were identified as having a high risk for fibre release.

The methodology used in deriving risk ratings for the asbestos risk assessment is provided in Appendix F of this report.

The client is advised that the Asbestos Register is not a definitive description of all asbestos materials present in the area(s) of investigation.

5.0 Recommendations

The Yacht Club contains asbestos fibre cement sheeting—which was identified during the survey to be in a fair condition as some areas were visually observed as broken. It is recommended that broken or damaged areas be encapsulated with an appropriate sealant to minimise risk of fibre release. All other asbestos containing materials on site outlined in Appendix C present a low risk, and should be labelled as containing asbestos and re-inspected on an annual basis. This is to ensure the condition of the material is still good, and risk of exposure is kept low.

The inaccessible areas identified in Section 3.3 and Appendix E should be treated as containing ACM unless confirmed otherwise by a competent person.

Where ACM has been identified (through sampling or visually assumed), appropriate risk management should be implemented to ensure that the risks are adequately controlled. Risk management of asbestos materials identified may range from their complete removal to periodic inspection and review of the risks posed by materials left in situ.

If any of the inspected areas that contain ACM are to undergo renovations or demolition, the asbestos containing materials identified should be removed prior to the commencement of demolition activities on Site.

Section 6.0 below provides general guidance only on appropriate risk management measures and is not intended to provide definitive advice or recommendations as to any obligations that arise, or measures that should be taken, as a result of any identified asbestos materials.

6.0 Hazard Control

The New Zealand Guidelines for the Management and Removal of Asbestos include the following methods of hazard control:

- 1 Removal: Removing asbestos containing material;
- 2 Enclosure: Placing a barrier between the asbestos containing material and the surrounding environment;
- 3 **Encapsulation or Sealing**: coating the asbestos containing material with a product that usually penetrates to the substrate and the coating just provides a protective barrier impermeable to asbestos.

The chosen method of control should be based upon assessment of the condition of the asbestos, the possibility of further damage or deterioration, and the potential for exposure of personnel to airborne asbestos (NZDAA, 2011).

6.1 Asbestos Removal

Asbestos removal aims to remove the hazard completely, although it should be noted that in some situations, the removal of asbestos materials may generate a higher level of risk than leaving in situ. Section 5.4.1 of the *New Zealand Guidelines for the Management and Removal of Asbestos* recommend the removal of asbestos where:

- It is breaking away from the substrate base;
- Prior to any demolition works occurring; or
- When it is likely to be abraded or otherwise damaged.

Removal is also considered generally appropriate when:

- The surface is friable or asbestos is poorly bonded;
- Asbestos is severely water damaged or liable to damage or deterioration;
- Where there is lichen growth or damage; or
- Where asbestos is located in air conditioning ducts.

Removal may not be appropriate where asbestos materials are located on complex and inaccessible surfaces or where removal is extremely difficult and other techniques offer a satisfactory alternative.

6.2 Asbestos Enclosure

Enclosure is the placing of a barrier between the asbestos containing materials and the surrounding environment. The asbestos hazard will remain, however it is isolated from the surrounding environment.

Section 5.4 (Table 1) of the New Zealand Guidelines for the Management and Removal of Asbestos, states that enclosure is considered appropriate when;

- Removal is extremely difficult;
- Fibres can be completely contained within enclosure;
- Most of surface is already inaccessible; or
- Disturbance to, or entry into enclosure is not likely.

Enclosure is not considered appropriate when:

- Enclosure itself is liable to damage; or
- Water damage is likely.

Enclosure acts to isolate people from exposure to asbestos containing materials; however the nature of the enclosure may limit accessibility to these materials for inspection of the condition of the materials.

6.3 Asbestos Encapsulation or Sealing

Encapsulation involves coating the asbestos contaminated materials with a product that usually penetrates to the substrate and hardens the material. Sealing is where there is no substantial penetration of the substrate and the coating provides a protective barrier impermeable to the asbestos. Under the *Health and Safety in Employment (Asbestos) Regulations 1998*, encapsulation / sealing friable asbestos is considered restricted work and persons carrying out this work must hold a restricted licence.

Encapsulation / sealing is considered appropriate where:

- Asbestos containing material is in good condition;
- Removal is difficult;
- Damage of the asbestos containing material is unlikely;
- Short life of structure; and
- Asbestos containing material is readily accessible for regular assessment.

Encapsulation / sealing is not considered appropriate when:

- Asbestos is deteriorated;
- Application of sealant may cause damage to the material;
- Further water damage is likely; or
- Where there are large areas of damaged asbestos.

6.4 Friable and Bonded Asbestos-Containing Material Removal Guidelines

Friable asbestos means asbestos that under ordinary conditions can be easily crumbles. An employer should restrict access to friable asbestos materials and construction work processes involving friable asbestos material.

All friable asbestos 'work' must be undertaken by a person who holds a *restricted work* license. The *Guidelines for the Management and Removal of Asbestos* (the Guidelines) produced by the New Zealand Occupational Safety and Health Service of the DoL (1995, Revised 1999) provide the following general information with regard to restricted work: (It is noted that the source material for definition of '*restricted work*' is the *Asbestos Regulations* (1998), *Regulation 2*)

Restricted work means work in one or more of the following categories:

- Work involving asbestos, if the asbestos concerned is friable and is or has been used in connection with thermal or acoustic insulation, or fire protection, in buildings, ships, structures, or vehicles;
- b) Work involving asbestos, if the asbestos concerned is friable and is or has been used in connection with lagging around boilers ducts, furnaces, or pipes;
- The demolition or maintenance of anything, including a building or part of a building, containing friable asbestos;
- d) The encapsulation of materials containing friable asbestos;
- e) The use, on asbestos cement or other bonded product containing asbestos, of:
 - A power tool with any kind of cutting blade or abrasive device, except when it is used with dust control
 equipment; or
 - Any other equipment whose use may result in the release of asbestos dust, except when it is used with dust control equipment.
- f) Dry sanding of floor coverings containing asbestos.

With regard to non-friable asbestos, the Guidelines provide the following handling procedures and general precautions:

Part II: Handling of Bonded Asbestos

2.18 General

- **2.18.1** Non-friable asbestos products have been compounded from asbestos mixed with cement or other hard bonding materials. This part recommends precautions to be observed when working with non-friable asbestos products.
- **2.18.2** These products include, but are not limited to:
 - Flat or corrugated, compressed asbestos-cement sheeting;
 - Asbestos-cement pipes for water, drainage and flue gases;
 - Roofing shingles;
 - Floor or wall coverings;
 - Asbestos gaskets;
 - Pump and valve packing's, or
 - Asbestos bonded into bituminous products.
- **2.18.3** So long as these products are maintained in good order and are not worked on with abrasive cutting or grinding tools they are **not** likely to present a health risk.
- 2.18.4 New fibro-cement products manufactured in New Zealand no longer contain asbestos.
- **2.18.5** The employer shall ensure that precautions are observed during structural alteration or demolition involving asbestos-cement materials and removal of floor and wall coverings containing asbestos.
- **2.19** General precautions to be observed for non-friable asbestos products.
- **2.19.1** Work procedures must be designed to minimise the generation of dust.

Action should be taken to avoid the spread of asbestos fibre. In particular, the following principles should be adopted:

- a) Abrasive cutting or sanding power tools should not be used on asbestos-containing products.
 These may generate large amounts of dust containing asbestos.
- b) Non-powered hand tools such as hand saws should be used.
- c) Wetting down the material further reduces the release of asbestos fibre when cutting.
- d) High pressure water jets/guns shall not be used because of the potential to spread asbestos waste over the surrounding environment.
- Work with asbestos-containing products in well ventilated areas and, where possible, in the open air.
- f) Good work hygiene principles shall be observed. This may entail the use of plastic drop sheets to collect offcuts and coarse dust or the use of appropriate vacuum cleaning equipment when necessary.
- g) Suitable respiratory protection should be used when airborne asbestos fibre is likely to be present.
- h) All off-cuts and collected dust should be disposed of as asbestos waste.

Interim guidance for work involving asbestos (WorkSafe NZ, March 2015) provides further and more current guidance on the management and removal of ACM and should be used until the new WorkSafe NZ regulations come into effect. These new regulations are likely to come into effect in early 2016.

AECOM further recommends that as demolition work is likely to disturb the ACM then the ACM should be removed prior to works commencing. A destructive asbestos and hazardous materials inspection may also be necessary prior to work commencing in those areas not able to be accessed as detailed in this report.

Removal of ACM is to be undertaken in accordance with the requirements outlined in the Guidelines.

Airborne asbestos monitoring should be carried out during the removal of friable ACM and all samples should be analysed by a laboratory accredited by International Accreditation New Zealand (IANZ) or the reciprocal Australian body, the National Association of Testing Authorities (NATA) for the estimation of airborne asbestos fibre. In some cases, airborne asbestos monitoring will be required for the removal of non-friable ACM. For example, airborne asbestos monitoring is recommended during non-friable asbestos removal works at sensitive sites such as schools and hospitals or at a premise alongside schools and hospitals.

At the completion of asbestos removal work, a clearance inspection should be conducted by a competent person to assess the adequacy of the removal works undertaken.

In order to avoid any potential conflict of interest, it is recommended that airborne asbestos monitoring and clearance inspections be performed by person/s independent of the asbestos removal contractor.

All asbestos waste must be disposed at a suitably approved waste collection facility. All tipping receipts must be retained and asbestos registers updated to reflect the abatement action.

7.0 References

Hill Laboratories, Analysis Report 1501590, Report Dated 16-Nov-15

Hill Laboratories, Analysis Report 1502443, Report Dated 19-Nov-15

Department of Labour (DOL), revised 1999. *Guidelines for the management and removal of Asbestos*, New Zealand Occupational Safety and Health Service, DoL, 1995, Revised 1999.

Ministry of Business, Innovation and Employment (MBIE), 1998. New Zealand *Health and Safety in Employment (Asbestos) Regulations 1998.*

Ministry of Business, Innovation and Employment (MBIE), 1992. New Zealand *Health and Safety in Employment Act* 1992.

WorkSafe NZ, March 2015. Interim guidance for work involving asbestos (WorkSafe NZ, 2015).

8.0 Limitations

This Report has been produced by AECOM for the sole use of Christchurch City Council (Client) and for the specific purpose set out above in section 1. Its content is confidential and cannot be used for any other purpose(s) without prior permission from AECOM. This Report is qualified in its entirety by and should be considered in the light of AECOM's Terms of Engagement with the Client and the following:

- A. The survey was undertaken by visual inspection and minor destructive means only. Only those areas of investigation at the site that were accessible to AECOM at the time of our inspection are covered in this report. Therefore, AECOM does not guarantee that this visual inspection has confirmed, warranted or certified the location, identification and/or the removal of all asbestos material either identified by AECOM or others in any report previously provided and/or which is or may be present on the Site inspected.
- B. AECOM has relied on information provided by the Client and by third parties to produce this Report and arrive at its conclusions. AECOM has not verified the accuracy or completeness of such information and therefore assumes no responsibility for its accuracy and makes no representations with respect to its accuracy or completeness.
- C. In no event, regardless of whether AECOM's consent has been provided, does AECOM accept any liability, whether directly or indirectly, for any liability or loss suffered or incurred by any third party to whom this Report is disclosed placing any reliance on this Report, in part or in full.

This Report does not, and does not purport to, give legal advice as to the Client's actual or potential asbestos or hazardous material liabilities, or draw conclusions as to whether any particular circumstances constitute a breach of relevant legislation. Such advice can only be given by qualified legal practitioner

Appendix A

Photographic Log

Photo No. Date

1 04/11/2015

Room / Area

Naval Point boat yard shed

Location

Boat yard shed – Roofing building paper

Survey Reference

Not sampled, not suspect ACM

Asbestos Type

No ACM Suspected

Condition

Caption FCS

Not suspected ACM

Photo No.	Date
2	04/11/2015
Room / Area	
Naval Point Resc	ue boat shed
Location	
Southern wall	
Survey Reference	ce
Nprbs1	
Asbestos Type	
No Asbestos I	Detected
Condition	
Broken, Layered	

Photo No. Date

> 3 04/11/2015

Room / Area

Naval Point Rescue boat shed

Location

Southern wall

Survey Reference

Nprbs1

Asbestos Type

No ACM detected

Condition

FCS panels on southern wall

Photo No.	Date
4	04/11/2015
Room / Area	

Naval Point Rescue boat shed

Location

Northern wall

Survey Reference

Nprbs2

Asbestos Type

No ACM Detected

Condition

Newer looking FCS to FCS on Southern wall

Caption

FCS panels on northern wall.

Photo No.	Date
5	04/11/2015

Room / Area

Naval Point yacht club

Location

Exterior wall north.

Survey Reference

Npyc1

Asbestos Type

No Asbestos Detected

Condition/Comments

Some minor damage to wall.

Later layered fibre cement sheeting on northern wall.

Photo No.	Date
6	04/11/2015
Room / Area	
Naval Point yacht club	

Location

Exterior wall north.

Survey Reference

Npyc1

Asbestos Type

No Asbestos Detected

Condition/Comments

Some minor damage to wall.

Caption

Later layered fibre cement sheeting on northern wall.

Photo No.	Date
7	04/11/2015
D / A	

Room / Area

Naval Point yacht club

Location

Exterior wall north.

Survey Reference

Npyc1

Asbestos Type

No Asbestos Detected

Condition/Comments

Some minor damage to wall.

Caption

Later layered fibre cement sheeting on northern wall.

Photo No.	Date
8	04/11/2015
D / A	

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior walls north and east.

Survey Reference

Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Some minor damage to parts of wall.

Caption

Original cladding on wall. Not layered like Npyc1 samples.

Photo No. Date

9 04/11/2015

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior wall north and east.

Survey Reference

As per Npyc2

Asbestos Type

Inaccessible

Condition/Comments

Suspected ACM cladding, Inaccessible at the time of inspection.

Caption

NE gable 2nd floor. Suspected asbestos containing fibre cement

Photo No.	Date
10	04/11/2015

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior wall north and eastern soffit

Survey Reference

Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Broken in places.

Caption

Battens also as original cladding on wall. Not layered like Npyc1 samples.

Photo No. Date

11 04/11/2015

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior wall north and east.

Survey Reference

Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Broken in places.

Caption

Original cladding on wall. Not layered like Npyc1 samples.

Photo No.	Date
12	04/11/2015

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior wall north and eastern soffit.

Survey Reference

Same as Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Soffits in good condition, it is assumed that the soffits are the same throughout the building.

Caption

Soffit as per original cladding on wall.

Photo No. Date

13 04/11/2015

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior wall north and east.

Survey Reference

Npyc2a

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Unsealed in places.

Caption

Original cladding is asbestos containing.

Photo No.	Date
14	04/11/2015
Poom / Aron	

Room/ Arca

Naval Point yacht club exterior walls.

Location

Exterior wall north and east.

Survey Reference

Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Fibre cement sheeting is in good condition, wooden battens over wall cladding.

Caption

2nd floor wall as per original asbestos containing cement sheeting.

Photo No. Date 15 04/11/2015

Room / Area

Naval Point yacht club exterior walls.

Location

Exterior wall north and eastern soffit.

Survey Reference

Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Good.

Soffit on eastern entrance.

Photo No.	Date
16	04/11/2015
Room / Area	

Naval Point yacht club exterior walls.

Location

Exterior wall north and east.

Survey Reference

Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Fair Condition/Comments.

Caption

Some battens have been replaced with wood; most are original asbestos containing fibrous cement material.

Photo No. Date

17 04/11/2015

Room / Area

Naval Point yacht club

Location

Exterior wall north; bituminous building paper.

Survey Reference

Npyc3

Asbestos Type

No asbestos detected

Condition/Comments

Exposed where cladding is broken.

Building paper sampled from where cladding is broken.

Photo No.	Date
18	04/11/2015

Room / Area

Naval Point yacht club

Location

North wall glazing compound

Survey Reference

Npyc4

Asbestos Type

No asbestos detected

Condition/Comments

Fair.

Caption

Window Putty.

Photo No. Date

19 04/11/2015

Room / Area

Naval Point yacht club

Location

North wall glazing compound

Survey Reference

Npyc4

Asbestos Type

No asbestos detected

Condition/Comments

Fair

Glazing compound.

Photo No.	Date
20	04/11/2015
Room / Area	
Naval Point yacht club	

Location

Hallway wall to office

Survey Reference

Refer sample npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Good.

Caption

Original exterior wall. Wooden battens in this area.

Photo No. Date
21 04/11/2015

Room / Area

Naval Point yacht club

Location

Eastern stairwell near entrance

Survey Reference

Not sampled, live. Presumed ACM.

Asbestos Type

Asbestos - Visual

Condition/Comments

Good.

Meter board

Photo No.	Date
22	04/11/2015
Room / Area	
Naval Point yach	t club

Location

Upstairs hallway

Survey Reference

Not sampled. Strongly presumed as per Npyc2

Asbestos Type

Chrysotile and Amosite

Condition/Comments

Good.

Caption

Annotated photo shows where asbestos containing materials are present on hallway walls.

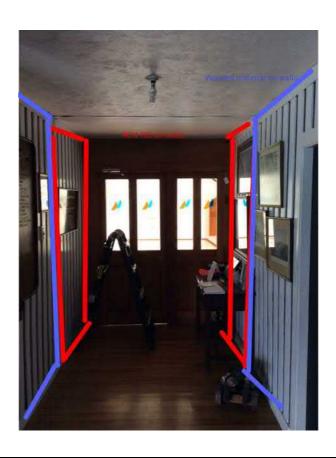


Photo No. Date

23 04/11/2015

Room / Area

Naval Point yacht club

Location

Upstairs hallway

Survey Reference

Not sampled. Suspected ACM

Asbestos Type

Suspected ACM

Condition/Comments

Good.

Caption

Flat non textured ceiling suspected asbestos containing.

Photo No. Date

24 04/11/2015

Room / Area

Naval Point yacht club

Location

Upstairs hallway ceiling

Survey Reference

Npyc5

Asbestos Type

No asbestos detected

Condition/Comments

Good in places, poor in others.

Caption

No asbestos detected.

Photo No.	Date	
25	04/11/2015	
Room / Area		
Naval Point yacht club		
Location		
Upstairs hallway wall		
Survey Reference		
As per Npyc5		
Asbestos Type		
No asbestos detected		
Condition/Comments		
Good.		

Wall is similar material to ceiling and not suspected ACM.

Caption

Date	
04/11/2015	
Naval Point yacht club	
Upstairs hallway ceiling	
As per Npyc5	
No asbestos detected	
ents	
Poor.	

Photo No. Date

> 27 04/11/2015

Room / Area

Naval Point yacht club

Location

Upstairs function room

Survey Reference

Live electrical board.

Asbestos Type

Asbestos - Visual

Condition/Comments

Fair

Asbestos containing electrical backing board.

Photo No.	Date
28	04/11/2015
Room / Area	

Naval Point yacht club

Location

Upstairs function room

Survey Reference

Not sampled suspected asbestos containing sealer.

Asbestos Type

Inaccessible

Condition/Comments

Suspected CAF gasket.

Caption

Gasket and sealer suspected to contain asbestos.

Photo No. Date
29 04/11/2015

Room / Area

Naval Point yacht club

Location

Upstairs function room

Survey Reference

Not sampled

Asbestos Type

Not suspected ACM

Condition/Comments

Good

 $\label{eq:continuous} Fireplace door seal-Not suspected \\ ACM-appears modern.$

Photo No.	Date	
30	04/11/2015	
Room / Area		
Naval Point yacht club		
Location	Location	
Upstairs function room		
Survey Referen	ice	
Not sampled suspected asbestos containing.		
Asbestos Type		
Suspected Asbestos		
Suspected As	sbestos	
Suspected As Condition/Com		
_		

Thermal bricks suspect ACM.

Photo No. Date

31 04/11/2015

Room / Area

Naval Point yacht club

Location

Upstairs function room

Survey Reference

Not sampled, components suspected to contain asbestos.

Asbestos Type

Inaccessible

Condition/Comments

Fair

Caption

Fireplace with suspected ACM components internally.

Photo No.	Date
32	04/11/2015
Room / Area	
Naval Point yacht club	
Location	
Building wall	
Survey Reference	ee
Npyc6	
Asbestos Type	
No suspected Asbestos	
Condition/Comments	
Fair in places.	

Layered cement similar to sample Npyc1 on northern walls.

Photo No.	Date	
33	04/11/2015	
Room / Area Naval Point yacht club		
Location Building wall		
Survey Reference As per Npyc6		
Asbestos Type No asbestos detected		
Condition/Comments		
Good.		
Caption		
Cement sheet cladding.		

Photo No.	Date
34	04/11/2015
Room / Area	
Naval Point yacht club	
Location	
Library	
Survey Referen	nce
Npyc8	
Asbestos Type	
No asbestos detected	
Condition/Com	ments
Good.	
Caption	
Gib board joint	compound

Photo No.	Date	
35	04/11/2015	
Room / Area		
Naval Point yacht club		
Location		
Library		
Survey Referen	ice	
Npyc8		
Asbestos Type		
No asbestos detected		
Condition/Com	Condition/Comments	
Good.		
Caption		
Gib board joint	compound	

Photo No.	Date
36	04/11/2015

Room / Area

Naval Point yacht club

Location

External SW corner

Survey Reference

Not sampled, live.

Asbestos Type

Asbestos- Visual

Condition/Comments

Inaccessible at time of inspection, due live power

Caption

Live electrical backing board. Suspected ACM.

Photo No.	Date
37	04/11/2015
Room / Area	
Naval Point yacht club	
Location	
Internal under stairs by bathrooms	

Not sampled **Asbestos Type**

Survey Reference

Inaccessible

Condition/Comments

Suspected millboard at top of cylinder.

Caption

Hot water cylinder suspected to contain ACM


Photo No.	Date	
39	11/11/2015	
Room / Area		
Naval point pav	rilion	
Location		
South wall soffit patch		
Survey Referen	nce	
NPP-1a		
Asbestos Type		
No Asbestos detected		
Condition/Comments		
Good		
Caption		
FCM patch on soffit		

Photo No.	Date
40	11/11/2015
Room / Area	
Naval point pavi	ilion
Location	
Soffit around wh	nole building
Survey Referen	ice
NPP-1	
Asbestos Type	
No Asbestos	detected
Condition/Com	ments
Good	
Caption	
Original soffit a	round building

Photo No.	Date					
41	11/11/2015					
Room / Area						
Naval point pavil	ion					
Location						
Window corkage on steel joinery						
Survey Reference	ee					
NPP-2						
Asbestos Type						
No Asbestos detected						
Condition/Comr	nents					
Good						
Caption						
Window Putty						

Photo No.	Date
42	11/11/2015
Room / Area Naval point pavi	ilion
Location Entrance Eastern	n wall
Survey Referen	ce
Asbestos Type	
Asbestos – V	'isual
Condition/Com	ments
Good	
Caption	
Live electrical b	acking boarding

Photo No.	Date
43	11/11/2015

Room / Area Naval point pavilion

LocationEastern side changing rooms

Survey Reference NPP-4

Asbestos Type

Asbestos- Visual

Condition/Comments

Good

Live backing board not sampled

Dhada Na	Data	
Photo No.	Date	
44	11/11/2015	
Room / Area		
Naval point pavilion		
Location		
Kitchen		
Survey Reference		
NPP-5		
Asbestos Type		

Inaccessible

Condition/Comments

Suspected millboard within Cylinder.

Hot Water Cylinder

Photo No. Date

45 11/11/2015

Room / Area

Naval point scout club storage shed.

Location

Behind door

Survey Reference

NPSC-1

Asbestos Type

Asbestos Visual

Condition/Comments

Good, drilled holes observed.

Caption

Electrical backing board

Photo No. Date

46 11/11/2015

Room / Area

Naval point scout club storage shed

Location

Window putty

Survey Reference

NPSC-2

Asbestos Type

Inaccessible

Condition/Comments

Suspected ACM

Caption

Window Putty,

Photo No. Date

47 17/11/2015

Room / Area
Naval point coastguard

Location

Cumrary Dafamanaa

Kitchen

Survey Reference Npc-1

Asbestos Type

No Asbestos Detected

Condition/Comments

Brown coloured Vinyl

Caption

Kitchen

Photo No.	Date
48	17/11/2015
Room / Area	
Naval point coast	tguard
Location	
Kitchen	
Survey Reference	ce
Npc-1	
Asbestos Type	
No Asbestos l	
Condition/Com	ments
Poor in patches	
Caption	
vinyl	

Photo No. Date

49 17/11/2015

Room / Area
Naval point coastguard

LocationRadio room cornice

Survey Reference

Npc2

Asbestos Type
No Asbestos Detected

Condition/Comments

Good

Caption

Cornice between wall and ceiling

Photo No.	Date
50	17/11/2015
Room / Area	
Naval point coast	tguard
Location	
Garage west wall	
Survey Reference	ce
Npc-3	
Asbestos Type	
Asbestos –Vis	sual
Condition/Com	nents
Good	
Caption	

Power live – Electrical distribution

Board

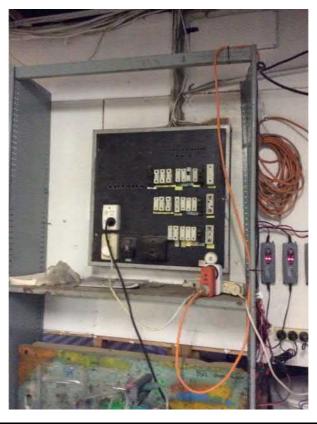


Photo No. Date

51 17/11/2015

Room / Area

Naval point coastguard

Location

Radio room textured ceiling

Survey Reference

Npc-4

Asbestos Type

No Asbestos Detected

Condition/Comments

Due to the sampling being destructive only one discrete sample was taken, this sample had no asbestos detected.

Caption

Textured ceiling

Photo No.	Date
52	17/11/2015
Room / Area	
Naval point coast	tguard
Location	
Under steps SW	corner
Survey Reference	ce

Asbestos Type

Npc-5

No Asbestos Detected

Condition/Comments

Good Condition/Comments. Only present in one section of building.

Caption

Fibre Cement sheeting under Steps

Photo No.	Date				
53	17/11/2015				
Room / Area					
Naval point coast	guard				
Location					
Under steps Ne si	de				
Survey Reference	e				
Npc6					
Asbestos Type					
No Asbestos Detected					
Condition/Comn	nents/Comment				
Good Condition/Obituminous adhes	Comments painted ive sealant.				
Caption					
Lower Section bi	tuminous sealant.				

Appendix B

Survey Results

Hazardous Materials Survey Results Sheet

Client: CCC
Site Address: Naval Point Yacht Club / Boat
Yard shed / Boat shed
Job Number: 60444747
Survey Date/s: 4/11/2015

Building	Room/ Area	Location	Material D	escription	Survey Reference	Result		Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
Naval Point yacht club - External	Boat Yard Shed	Boat yard shed roof membrane	Miscellaneous Products	Bituminous Adhesive / Sealant	Npbys1	Not suspected ACM								1	R1 - No action is required.	
Naval Point yacht club - External	Rescue boat shed	Southern wall	Cement Products	Wall Lining	Nprbs1	No Asbestos Detected								2	R1 - No action is required.	
Naval Point yacht club - External	Rescue boat shed	Southern wall	Cement Products	Wall Lining	Nprbs1	No Asbestos Detected								3	R1 - No action is required.	
Naval Point yacht club -	Rescue boat shed	Northern wall	Cement Products	Wall Lining	Nprbs2	No Asbe	estos Detected							4	R1 - No action is required.	
External Naval Point yacht club -	External	Exterior wall north	Cement Products	Wall Lining	Npyc1	No Asbestos Detected								5	R1 - No action is required.	
External Naval Point yacht club -	External	Exterior wall north	Cement Products	Wall Lining	Npyc1	No Asbestos Detected								6	R1 - No action is required.	
External Naval Point yacht club -	External	Exterior wall north	Cement Products	Wall Lining	Npyc1	No Asbe	stos Detected							7	R1 - No action is required.	
External Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	8	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	9	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	10	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	11	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	12	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	13	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	14	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	15	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	16	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	External	Exterior wall North side bituminous wall membrane	Miscellaneous Products	Bitumen	Npyc3	No Asbe	stos Detected							17	R1 - No action is required.	
Naval Point yacht club - External	External	North wall glazing compound	Miscellaneous Products	Caulking Compounds	Npyc4	No Asbe	estos Detected							18	R1 - No action is required.	
Naval Point yacht club - External	External	North wall glazing compound	Miscellaneous Products	Caulking Compounds	Npyc4	No Asbe	estos Detected							19	R1 - No action is required.	
Naval Point yacht club - External	Stairwell 1 by eastern entrance	Hallway wall to office	Cement Products	Wall Lining	Refer sample npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Good	Moderate	Low	Moderate	Low	20	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	Stairwell 1 by eastern entrance	Eastern stairwell	Insulation Board Products	Electrical Backing Board	Live. Not sampled	Asbes	itos (visual)	Bonded / Non Friable	Good	Moderate	Low	Low	Low	21	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	Stairwell 1 by eastern entrance	Upstairs hallway	Cement Products	Wall Lining	Refer sample npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Good	High	Low	Moderate	Low	22	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - External	Stairwell 1 by eastern entrance	Upstairs hallway	Cement Products	Wall Lining	Refer sample npyc2	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Good	High	Low	Moderate	Low	23	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	

Hazardous Materials Survey Results Sheet

Client: CCC
Site Address: Naval Point Yacht Club / Boat
Yard shed / Boat shed
Job Number: 60444747
Survey Date/s: 4/11/2015

Building	Room/ Area	Location	Material D	Description	Survey Reference	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
Naval Point yacht club - Internal	Stairwell 1 by eastern entrance	Upstairs hallway ceiling	Painted Surface	Internal	Npyc5	No Asbestos Detected							24	R1 - No action is required.	
Naval Point yacht club - Internal	Stairwell 1 by eastern entrance	Upstairs hallway ceiling	Painted Surface	Internal	Npyc5	No Asbestos Detected							25	R1 - No action is required.	
Naval Point yacht club - Internal	Stairwell 1 by eastern entrance	Upstairs hallway ceiling	Painted Surface	Internal	Npyc5	No Asbestos Detected							26	R1 - No action is required.	
Naval Point yacht club - Internal	External	Upstairs function room	Insulation Board Products	Electrical Backing Board	Not sampled	Asbestos (visual)	Bonded / Non Friable	Good	Low	Low	Low	Low	27	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - Internal	External	Upstairs function room	Rope Cloth Gasket Products	Gasket - Vinyl Sheet	Not sampled suspected acm	Inaccessible							28	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	
Naval Point yacht club - Internal	External	Upstairs function room	Rope Cloth Gasket Products	Gasket - Rope	Not sampled	Not suspected ACM							29	R1 - No action is required.	
Naval Point yacht club - Internal	External	Upstairs function room	Cement Products	Fire Break	Not sampled suspected acm	Inaccessible							30	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	
Naval Point yacht club - External	External	Upstairs function room	Rope Cloth Gasket Products	Gasket - Vinyl Sheet	Not sampled suspected acm	Inaccessible							31	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	
Naval Point yacht club - External	2nd floor west balcony	Building wall	Cement Products	Wall Lining	Npyc6	Not suspected ACM							32	R1 - No action is required.	
Naval Point yacht club - External	2nd floor west balcony	Building wall	Cement Products	Wall Lining	Npyc6	Not suspected ACM							33	R1 - No action is required.	
Naval Point yacht club - External	Stairwell 1 by eastern entrance	Library ceiling	Miscellaneous Products	Caulking Compounds	Npyc8	No Asbestos Detected							34	R1 - No action is required.	
Naval Point yacht club - External	Stairwell 1 by eastern entrance	Library ceiling	Miscellaneous Products	Caulking Compounds	Npyc8	No Asbestos Detected							35	R1 - No action is required.	
Naval Point yacht club - External	External	Exterior SW corner	Insulation Board Products	Electrical Backing Board	Live. Not sampled	Asbestos (visual)	Bonded / Non- Friable	Good	Low	Low	Low	Low	36	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
Naval Point yacht club - Internal	Under stairs	Under stairs by bathrooms	Miscellaneous Products	"Millboard"	Not sampled suspected acm	Inaccessible							37	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	

SurveyResults Hazardous Materials Survey Results Sheet (Q4AN(EV)-335-FM70) Revision 2 August 6, 2012

ANZ
Hazardous Materials Survey Results Sheet Q4AN(EV)-335-FM70

Client: Christchurch City Council Site Address: Naval Point Pavilion Job Number: 60444747 Survey Date/s: 11/11/15

Room/ Area	Location	Material D	Description	Survey Reference	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
Outside	South wall soffit patch	Cement Products	Soffit	NPP-1a	No Asbestos Detected							39	R1 - No action is required.	
Outside	Soffit around whole building	Null	null	NPP-1	No Asbestos Detected							40	R1 - No action is required.	
Outside	Window corkage on steel joinery	Other	null	NPP-2	No Asbestos Detected							41	R1 - No action is required.	
nside entrance, eastern changing room and kitchen	Entrance Eastern wall	Insulation Board Products	Electrical Backing Board	NPP-3	Asbestos (visual)	Bonded / Non Friable	Good	Low	Low	Low	Low	42	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
nside entrance, eastern changing room and kitchen	Eastern side changing rooms	Insulation Board Products	Electrical Backing Board	NPP-4	Asbestos (visual)	Bonded / Non Friable	Good	Low	Low	Low	Low	43	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
nside entrance, eastern changing room and kitchen	Kitchen	Miscellaneous Products	"Millboard"	NPP-5	Inaccessible							44	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	

SurveyResults Hazardous Materials Survey Results Sheet (Q4AN(EV)-335-FM70) Revision 2 August 6, 2012

AECOM

ANZ
Hazardous Materials Survey Results Sheet

nazardous mate	riais Survey Resi	ilis Sneet														Q4AN(EV)-335-FM70
Client: Christchruch City Cour	ncil															
Site Address: Naval Point scot	ut club															
Job Number: 60444747																
Survey Date/s: 11/11/15																
Building	Room/ Area	Location	Material D	Description	Survey Reference	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Reco	mmendations	Action Taken
Naval Point scout club - Weatherboard storage shed	Weather board shed	Behind door	Insulation Board Products	Electrical Backing Board	NPSC-1	Asbestos (visual)	Bonded / Non Friable	Good	Moderate	Low	Low	Low	45	R3 - Label material as contai inspect every 12 months. Re undertaken prior to any demo which may affect the materia	moval should be olition or refurbishment	
Naval Point scout club - Weatherboard storage shed	Weather board shed	Window putty	Miscellaneous Products	Cork Board	NPSC-2	Inaccessible							46	R10 - Presumed asbestos co inaccessible area. Asbestos s be present until proved other	should be presumed to	

Q4AN(EV)-335-FM70

Client: Christchruch City Council

Site Address: Naval Point Coastguard Building

Job Number: 60444747

Survey Date/s: 17-11-15

Room/ Area	Location	Material D	escription	Survey Reference	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations Action Take
Classroom kitchen and radio room	Kitchen	Vinyl Products	Floor Covering	Npc-1	No Asbestos Detected							47	R1 - No action is required.
Classroom kitchen and radio room	Kitchen	Vinyl Products	Floor Covering	Npc-1	No Asbestos Detected							48	R1 - No action is required.
Classroom kitchen and radio room	Radio room cornice	Painted Surface	Internal	Npc2	No Asbestos Detected							49	R1 - No action is required.
Garage and bathrooms	Garage west wall	Insulation Board Products	Electrical Backing Board	Npc-3	Asbestos (visual)	Bonded / Non Friable	Good	Low	Low	Moderate	Low	50	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.
Classroom kitchen and radio room	Radio room textured ceiling	Painted Surface	Textured Surface	Npc-4	No Asbestos Detected							51	R1 - No action is required.
Walls	Under steps sw corner	Cement Products	Wall Lining	Npc-5	No Asbestos Detected							52	R1 - No action is required.
Walls	Under steps Ne side	Miscellaneous Products	Bituminous Adhesive Sealant	Npc6	No Asbestos Detected							53	R1 - No action is required.

Appendix C

Asbestos Register

Hazardous Materials Survey Results Sheet Q4AN(EV)-335-FM70

Client: CCC
Site Address: Naval Point Yacht Club / Boat Yard shed / Boat shed
Job Number: 60444747
Survey Date/s: 4/11/2015

Register ID	Building	Room/ Area	Location	Material D	escription		Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	8	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	9	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	10	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	11	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	12	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	13	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	14	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	15	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-1	Naval Point yacht club - External	External	Exterior wall north and eastern entrance soffits	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Fair	Low	Low	Moderate	Low	16	R4 - Encapsulate material and fit with asbestos warning labels. Re-inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-2	Naval Point yacht club - External	Stairwell 1 by eastern entrance	Hallway wall to office	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Good	Moderate	Low	Moderate	Low	20	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-3	Naval Point yacht club - External	Stairwell 1 by eastern entrance	Eastern stairwell	Insulation Board Products	Electrical Backing Board	Asbe	stos (visual)	Bonded / Non Friable	Good	Moderate	Low	Low	Low	21	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-4	Naval Point yacht club - External	Stairwell 1 by eastern entrance	Upstairs hallway	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Good	High	Low	Moderate	Low	22	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-5	Naval Point yacht club - External	Stairwell 1 by eastern entrance	Upstairs hallway	Cement Products	Wall Lining	Asbestos	Chrysotile and Amosite	Bonded / Non Friable	Good	High	Low	Moderate	Low	23	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-6	Naval Point yacht club - Internal	External	Upstairs function room	Insulation Board Products	Electrical Backing Board	Asbe	stos (visual)	Bonded / Non Friable	Good	Low	Low	Low	Low	27	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALYC-7	Naval Point yacht club - External	External	Exterior SW corner	Insulation Board Products	Electrical Backing Board	Asbe	stos (visual)	Bonded / Non- Friable	Good	Low	Low	Low	Low	36	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	

SurveyResults Hazardous Materials Survey Results Sheet (Q4AN(EV)-335-FM70) Revision 2 August 6, 2012

ANZ
Hazardous Materials Survey Results Sheet

Client: Christchurch City Council
Site Address: Naval Point Pavilion
Job Number: 60444747
Survey Datels: 11/11/15

Register ID	Room/ Area	Location	Material D	Description	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
NAVALPV-1	Inside entrance, eastern changing room and kitchen	Entrance Eastern wall	Insulation Board Products	Electrical Backing Board	Asbestos (visual)	Bonded / Non Friable	Good	Low	Low	Low	Low	42	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	
NAVALPV-2	Inside entrance, eastern changing room and kitchen	Eastern side changing rooms	Insulation Board Products	Electrical Backing Board	Asbestos (visual)	Bonded / Non Friable	Good	Low	Low	Low	Low	43	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	

ANZ Hazardous Materials Survey Results Sheet Q4AN(EV)-335-FM70

Client: Christchruch City Council Site Address: Naval Point scout club Job Number: 60444747 Survey Date/s: 11/11/15

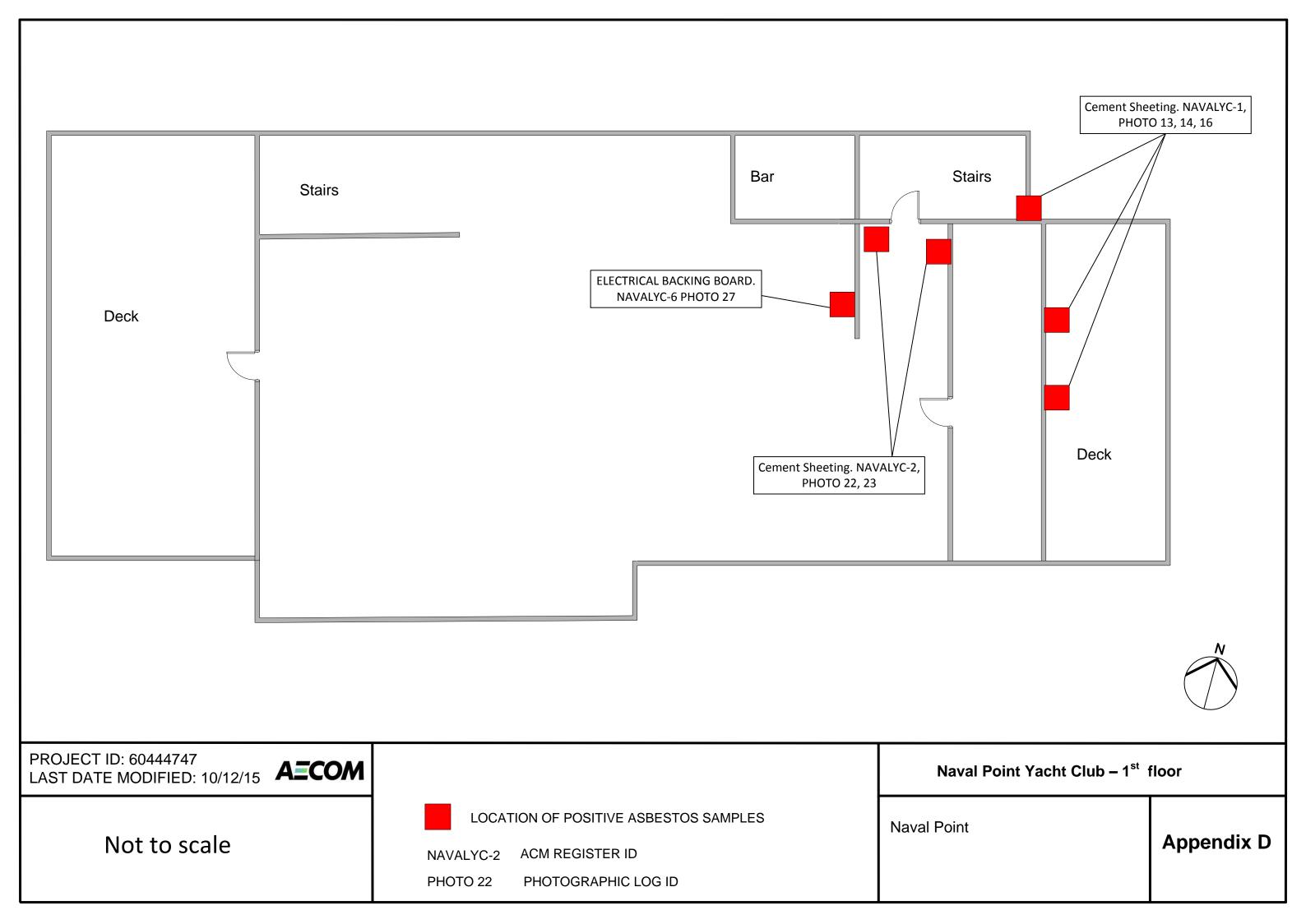
Register ID	Building	Room/ Area	Location	Material D	Description	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
NAVALSC1	Naval Point scout club - Weatherboard storage shed	Weather board shed	Behind door	Insulation Board Products	Electrical Backing Board	Asbestos (visual)	Bonded / Non Friable	Good	Moderate	Low	Low	Low	45	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	

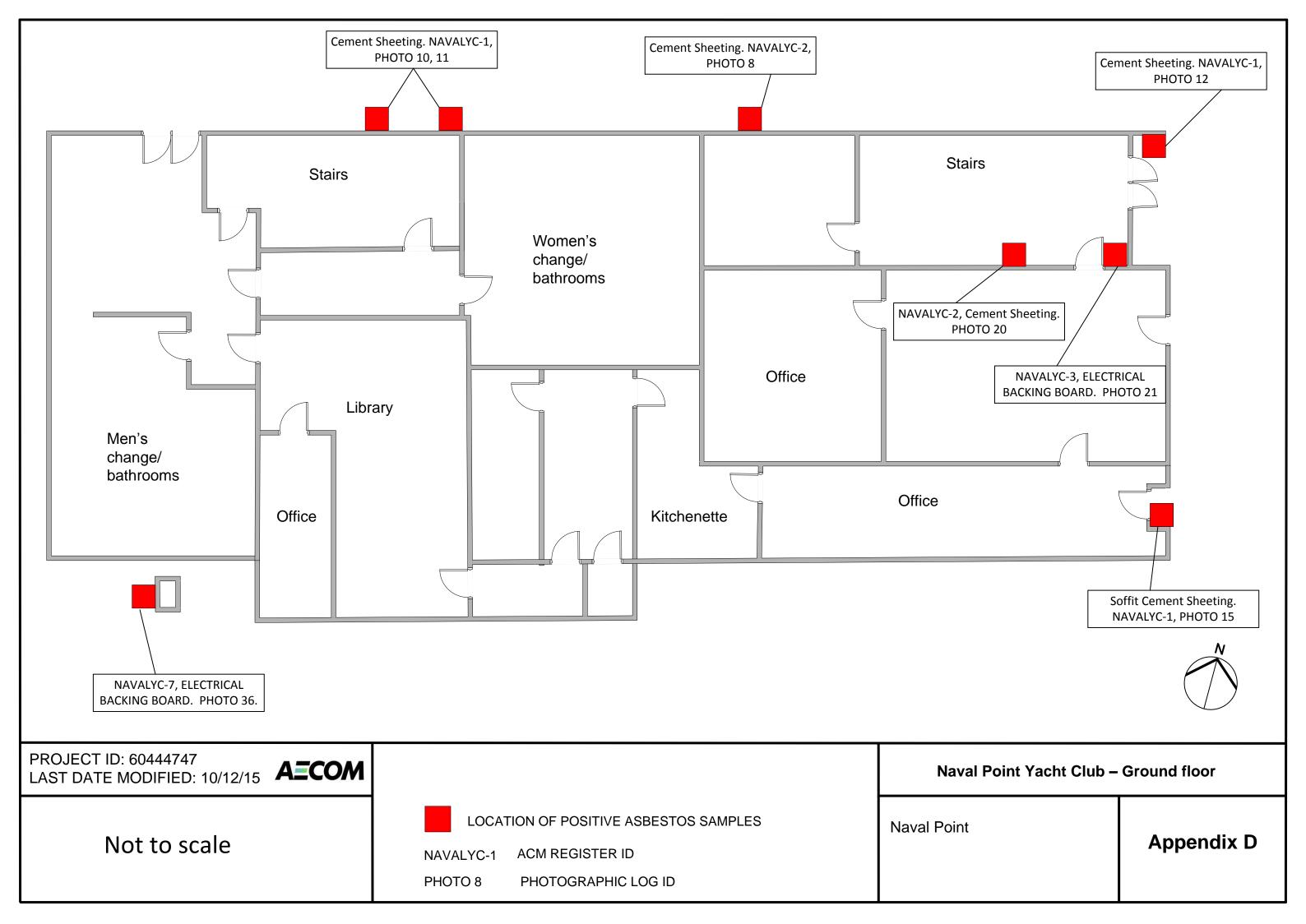
AECOM

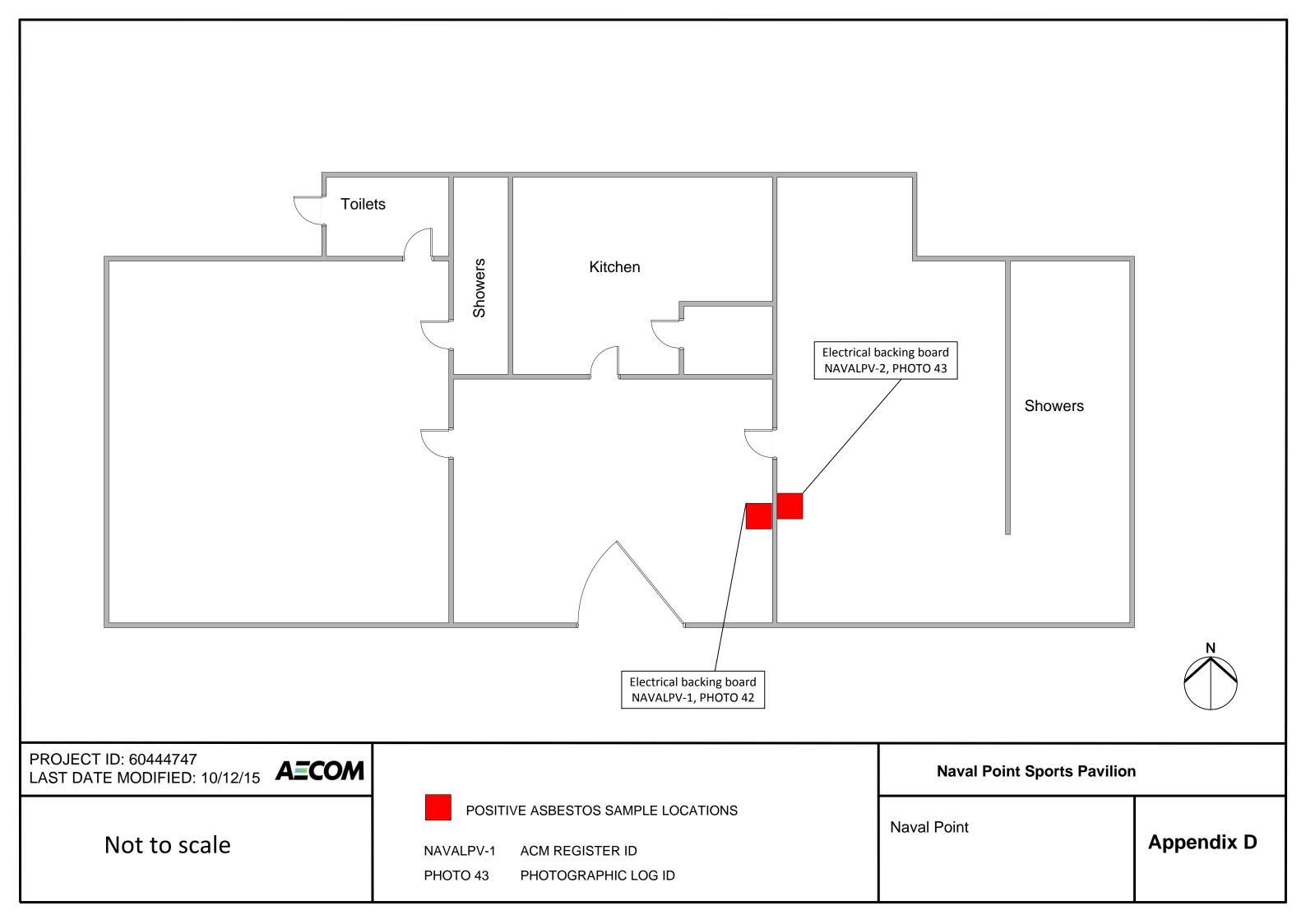
ANZ Hazardous Materials Survey Results Sheet

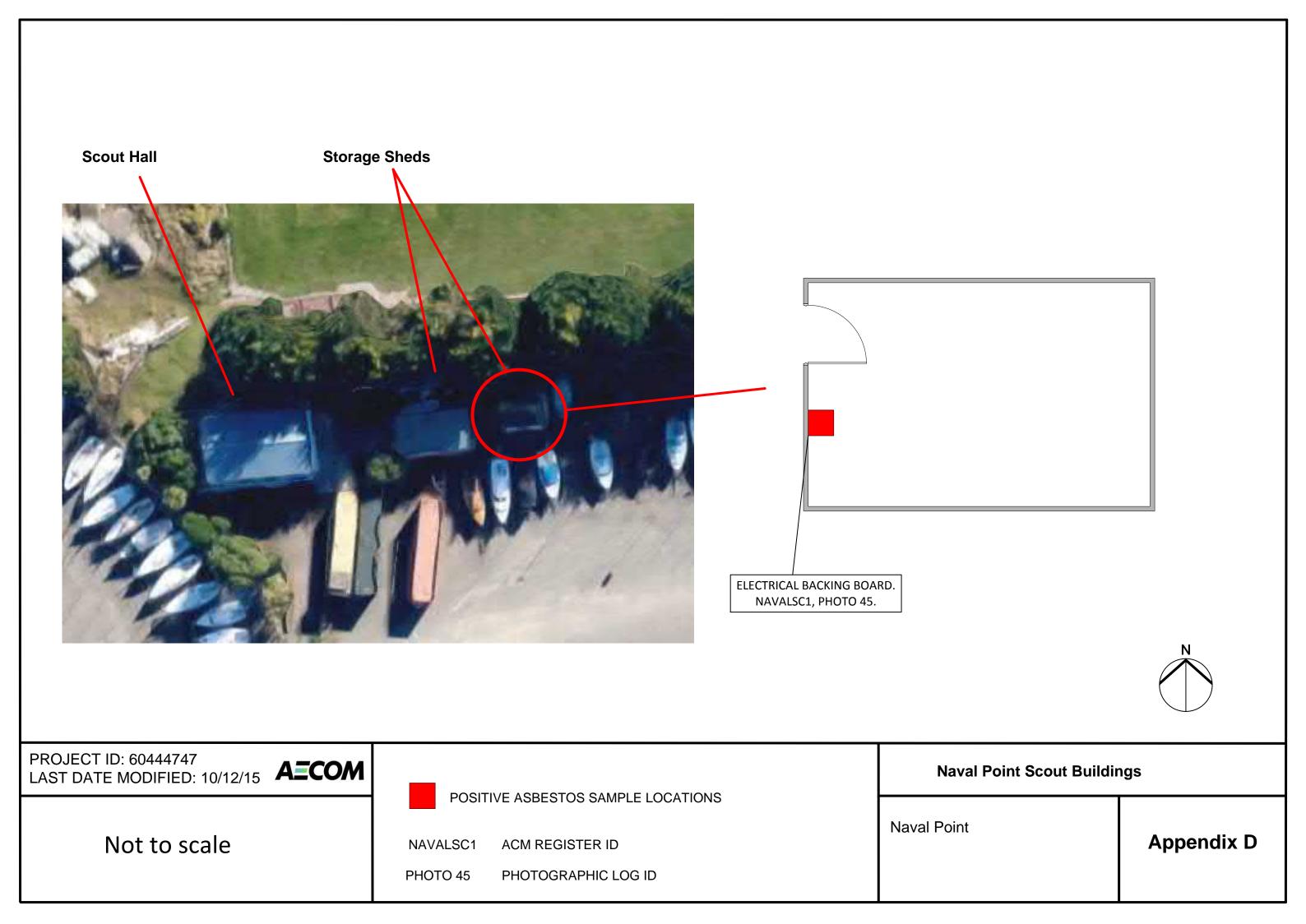
Q4AN(EV)-335-FM70

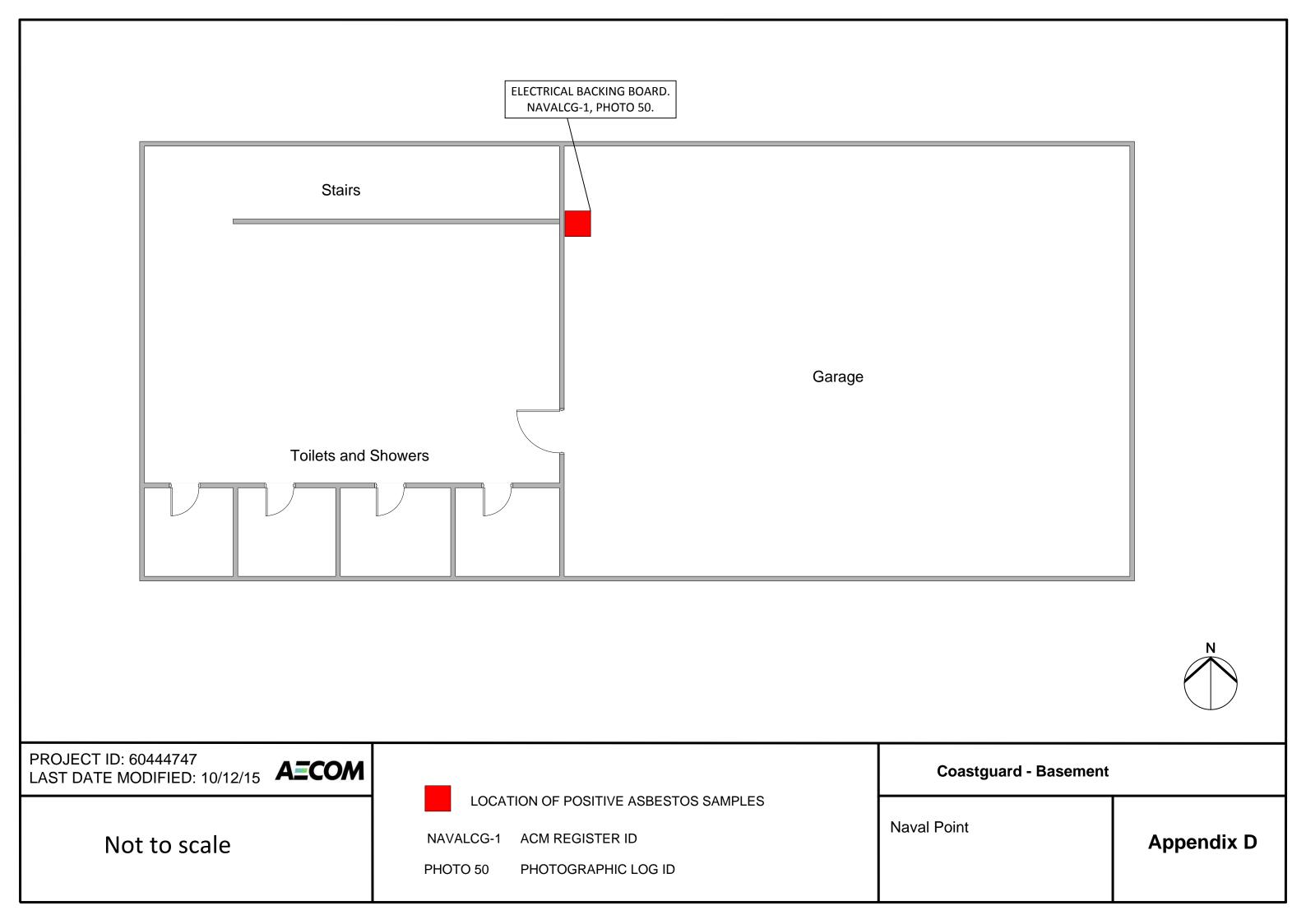
Client: Christchruch City Council
Site Address: Naval Point Coastguard Building


Job Number: 60444747


Survey Date/s: 17-11-15


Register ID	Room/ Area	Location	Material D	Description	Re	sult	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
NAVALCG-1	Garage and bathrooms	Garage west wall	Insulation Board Products	Electrical Backing Board	Asbesto	s (visual)	Bonded / Non Friable	Good	Low	Low	Moderate	Low	50	R3 - Label material as containing asbestos. Re- inspect every 12 months. Removal should be undertaken prior to any demolition or refurbishment which may affect the material.	


Appendix D


Site Plans

Appendix E

Inaccessible Areas

Q4AN(EV)-335-FM70

ANZ Hazardous Materials Survey Results Sheet

Appendix E - Inaccessable areas
Client: CCC
Site Address: Naval Point boat club / scout hall / pavilion / coastguard
Job Number: 60444747
Survey Date/s: 4-17/11/2015

Building	Room/ Area	Location	Material D	escription	Survey Reference	Result	Asbestos Classification	Condition	Activities	Risk of Fibre Release	Location	Risk Rating	Photo No.	Comments & Recommendations	Action Taken
Naval Point yacht club - Internal	External	Upstairs function room	Rope Cloth Gasket Products	Gasket - Vinyl Sheet	Not sampled suspected acm	Inaccessible							28	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos	
Naval Point yacht club - Internal	External	Upstairs function room	Cement Products	Fire Break	Not sampled suspected acm	Inaccessible							30	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos	
Naval Point yacht club - External	External	Upstairs function room	Rope Cloth Gasket Products	Gasket - Vinyl Sheet	Not sampled suspected acm	Inaccessible							31	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos	
Naval Point yacht club - Internal	Under stairs	Under stairs by bathrooms	Miscellaneous Products	"Millboard"	Not sampled suspected acm	Inaccessible								R10 - Presumed asbestos containing material to an inaccessible area. Asbestos	
Naval Point Pavilion	Inside entrance, eastern changing room and kitchen	Kitchen	Miscellaneous Products	"Millboard"	NPP-5	Inaccessible							44	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	
Naval Point scout club - Weatherboard storage she	Weather board shed	Window putty	Miscellaneous Products	Cork Board	NPSC-2	Inaccessible							46	R10 - Presumed asbestos containing material to an inaccessible area. Asbestos should be presumed to be present until proved otherwise.	

SurveyResults Hazardous Materials Survey Results Sheet (Q4AN(EV)-335-FM70) Revision 2 August 6, 2012

Page 1 of 1

Appendix F

Asbestos Risk Assessment Methodology

Appendix F

Asbestos Risk Assessment Methodology

The potential risks posed by asbestos-containing materials (ACM) in premises are due to a number of risk factors including the:

- ACM classification/friability of the material;
- Condition of the material;
- Activities which may affect the material;
- Risk of fibre release from the material; and
- Location of the material.

The risk assessment methodology used by AECOM is based on the Australian Standard AS4360-2004 Risk Management. The hazard levels for this assessment have been determined according to Table 6

Table 6 **Hazard Levels**

Risk Factor/Desc	cription		Hazard Level
ACM Classification	Bonded or Non-Friable	Materials that contain asbestos in a bonded matrix (may consist of Portland cement or various resin/binders and cannot be crushed by hand when dry).	2
Classification	Friable	ACM which, when dry, is or may become crumbled, pulverised or reduced to powder by hand pressure.	5
	Good	In situ materials that exhibit little or no sign of damage or deterioration.	1
Condition	Fair	Materials that exhibit mild to moderate damage and/or deterioration.	2
	Poor	Materials that exhibit moderate to severe damage or deterioration.	3
	Low	The location of the material and use of the area indicate that the material will not likely be disturbed during normal operations.	1
Activities	Moderate	The location of the material and use of the area indicate that the material might be disturbed during normal operations.	2
	High	The location of the material and use of the area indicate that the material is likely to be disturbed during normal operations. Evidence of prior disturbance may be present.	4
	Low	Material is not prone to release asbestos fibres (e.g. resins, floor tiles).	1
Risk of Fibre Release	Moderate	Material that may release fibres upon disturbance (e.g. cement products).	2
	High	Material likely to release significant fibre concentrations upon disturbance (e.g. spray coating).	3
	Low	ACM is present in an open environment (e.g. outdoors).	1
Location	Moderate	ACM is present within a semi-enclosed environment.	2
	High	ACM is located within an enclosed environment and exposed to forced ventilation.	4

The multiplication of the asbestos type and each risk factor can be then used to determine the Hazard Level as follows:

ACM Classification x Condition x Activities x Risk of Fibre Release x Location = Hazard Level

The recommended health risk/action priority rating for each Hazard Level is provided in Table 8

Table 7 **Risk Ratings**

Risk Rating	Overall Hazard Level
Low	0 – 19
Moderate	20 – 49
High	> 50

Control measure guidelines for each Risk Rating is provided in Table 8.

Table 8 **Definitions of Risk Rating and Control Measure Guidelines**

Risk Rating		Definition
Health Risk	Low	Products or materials that pose negligible risk to employees and the general
Hazard Level	0 – 19	public. They consist of materials that currently are in a good condition, located in areas which are not subject to activities that may impact upon
Action Priority	AP3	them and are of a type which do not readily release asbestos fibres upon contact. These materials should be identified and warning signs erected. The material does not present a significant risk unless disturbed by intrusive work such as drilling, cutting, breaking or sanding.
Health Risk	Moderate	Products or materials that pose a risk to employees and the public in their
Hazard Level	20 – 49	current state. They consist of materials whose condition has degraded, in an area where they may be impacted upon by surrounding activities and of a
Action Priority	AP2	type that can release asbestos fibres upon contact. Removal or encapsulation and regular reviews or assessments are recommended for these materials.
Health Risk	High	Products or materials that pose an immediate or elevated risk to employees
Hazard Level	> 50	or the public in their current state. They consist of materials that are in poor condition, may be located within return air plenums or are in an area where
Action Priority	AP1	activities are very likely to impact upon the material. Immediate actions should be taken for these materials to be removed by a licensed asbestos removal contractor. Alternative management strategies must be considered where removal of ACM is not practicable.

The Asbestos Register should form part of the Site Health and Safety Management System and will need to be reviewed at least annually or sooner where there is any significant change in circumstances.

It should be noted that any risk assessment presented in this document was made on the basis of the nature of activities observed at the time the survey was undertaken. Changes in circumstances which affect the current Risk Assessment should be notified to your AECOM Consultant.

Appendix G

Laboratory Analysis Results

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 1

A2Pv1

Client: AECOM New Zealand Limited

Contact: Alan Spooner

C/- AECOM New Zealand Limited

PO Box 710

CHRISTCHURCH 8140

Lab No: 1502443

Date Registered: 18-Nov-2015 **Date Reported:** 19-Nov-2015

Quote No: 60851

Order No: 60444747-1.2

Client Reference:

Submitted By: Alan Spooner

Sample Type: Bui	Sample Type: Building Material												
Sample Name	Lab Number	Sample Category	Sample size (weight or dimensions)	Asbestos Presence / Absence									
NPC-1 - Kitchen Vinyl Floor	1502443.1	Linoleum / Vinyl floor tile	1.59	Asbestos NOT detected.									
NPC-2 - Radio Room Cornice	1502443.2	Fibre Board	0.27	Asbestos NOT detected.									
NPC-4 - Radio Room Ceiling	1502443.3	Textured Coating	0.38	Asbestos NOT detected.									
NPC-5 - FCS By Steps	1502443.4	Fibre Board	5.61	Asbestos NOT detected.									
NPC-6	1502443.5	Linoleum / Vinyl floor tile	0.35	Asbestos NOT detected.									

Analyst's Comments

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Building Material	Sample Type: Building Material										
Test	Method Description	Default Detection Limit	Sample No								
Asbestos in Bulk Material			•								
Sample Category	Assessment of sample type.	-	1-5								
Sample size (weight or dimensions)	Sample size. Weight or size as appropriate.	-	1-5								
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1-5								

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Asbestos Section Manager

Client

Clien				Hamilton 3240, New Zeala	Received by: Natalia Leatua
Name	AECOM New Zealand Ltd			Office use only Jo	3115024434
Addres	s 2-2 Hazeldean Road, Addi	ngton, Christchurd	<u>ch</u>		CUSTODY REGORD
Phone	03 966 6000	Fax		Sent to	Date & Time: ソフ/パルミ
	Reference 60444747	1.2		Hill Laboratories	Name: Alon Spooner
Quote i	No 60851 Ord	er Number		Please tick if you require COC to be faxed back	Signature:
Prima	ary Contact Alan Spoot	45		Received at	Date & Time:
	nitted By			Hill Laboratories	Name:
Charg	ge To AECOM New Ze	ealand Ltd 53	3080		Signature:
	Its To	☐ Mail Subn	nitter	Condition Room Temp	Chilled Frozen
☑ E	mail Results Alan, Spoon	er@aecom.c	0M	Sample Analysis det	ails checked
	ADDHIONALINE	ORMATION		Priority	
				☐ Low ☑	Normal A High
				Urgent (ASAP, extr	ra charge applies, please contact the lab first)
				Requested Reporting Date	9:
2.0000 (20.0000000 PRO)	le Types				
Waters	GW Ground Water L SW Surface Water S	. Leachate	Pot1	Potable Water (LAS/EU) Audit Monitoring Check Monitoring	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool
Solids	TW Trade Waste ES Soil S	E Sediment	SL	Sludge	PL Plant
Other	O O Oil N		FS	FS Fish/shellfish/biota	BM BM Biological Material
		Sample	Sample	Tt- Did	
No.	Sample Name	Date & Time	Type	Tests Required	dact
1	NPC-1	17/11/15	179	Bulk ID for	a.50e.8105
2	NPC-Z	11	'1		***************************************
3	NPC-4	11	11		
4	NPC-4 NPC-5 NPC-6	//	/ 1		
5	NPC-6	/1	/)		· · · · · · · · · · · · · · · · · · ·
6		·			
7					
8					
9					
10					
		-			Continued on next page

Date Recv: 18-Nov-15 07:08

R J Hill Laboratories Limite

1 Clyde Street Private Bag 3205

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 2

A2Pv1

Client: AECOM New Zealand Limited

Contact: Alan Spooner

C/- AECOM New Zealand Limited

PO Box 710

CHRISTCHURCH 8140

Date Registered: 16-Nov-2015 **Date Reported:** 18-Nov-2015

Lab No:

1501590

Quote No: 60851 Order No: NPASP1

Client Reference: 60444747_1.2 Submitted By: Alan Spooner

Sample Type: Bui	Iding Materia	al		
Sample Name	Lab Number	Sample Category	Sample size (weight or dimensions)	Asbestos Presence / Absence
NPYC 1 Ext Wall Wall Lining Layered Composite Board	1501590.1	Fibre Board	4.29	Asbestos NOT detected.
NPYC 2 Exterior Wall Lining (North) 2nd Level Fibre Cement Board	1501590.2	Fibre Cement	44.84	Amosite (Brown Asbestos) and Chrysotile (White Asbestos) detected.
NPYC 3 North Exit Wall Bitumen Membrane	1501590.3	Bituminous Product	1.6	Asbestos NOT detected.
NPYC 4 Exterior Window Caulking	1501590.4	Other #1	4.28	Asbestos NOT detected.
NPYC 5 Ceiling Gible Textured Coat Upper Ceiling	1501590.5	Other #2	6.33	Asbestos NOT detected.
NPYC 8 Library Gypsum Board Joint Compund Ceiling	1501590.6	Textured Coating	0.41	Asbestos NOT detected.
NPRBS 1 Rescue Boat Shed Exterior Column Flat Fibre Cement Sheet (Layered)	1501590.7	Fibre Cement	30.43	Asbestos NOT detected.
NPRBS 2 Rescue Boat Shed Exterior Column Cladding Flat Fibre Cement Sheet	1501590.8	Fibre Cement	6.54	Asbestos NOT detected.
NPP-1 60444 767	1501590.9	Fibre Board	3.24	Asbestos NOT detected.
NPP-1a 60444 767	1501590.10	Fibre Board	4.66	Asbestos NOT detected.
NPP-2 60444 767	1501590.11	Other #3	2.67	Asbestos NOT detected.
NPYC 4 Exterior Wall Upper Level	1501590.12	Fibre Cement	20.35	Amosite (Brown Asbestos) and Chrysotile (White Asbestos) detected.

Analyst's Comments

#1 Putty

#2 Plaster

#3 Render

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Building Material										
Test	Method Description	Default Detection Limit	Sample No							
Asbestos in Bulk Material										
Sample Category	Assessment of sample type.	-	1-12							
Sample size (weight or dimensions)	Sample size. Weight or size as appropriate.	-	1-12							
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1-12							

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Asbestos Section Manager

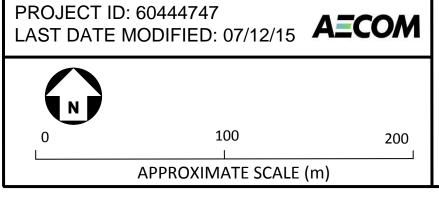
Job No: Date Recv: 16-Nov-15 14:49 ANALYS 150 1590

R J Hill Laboratories Limited

1 Clyde Street Private Bag 3205

Hamilton 3240, New Zealand

_					
	1	1	^	n	•


Client					The second secon
Name	AECOM New Zealand Ltd 2-2 Hazeldean Road, Addingt	on Christchurch) No:
Address	2-2 Hazeldean Road, Addingt	on, onnecond		GHAN OF C	SUSTODY RECORD
Phone	03 966 6000 Fa	ах		Sent to	Date & Time: [/ /11/15
Client Re	Forence 60444747			Hill Laboratories	Name: Alan Spaner
Quote No		Number NPAS,	<u>P1</u>	Please tick if you require COC to be faxed back	Signature:
	y Contact Alan Spooner	·		Received at Hill Laboratories	Date & Time:
Submit					Name:
Charge	e To AECOM New Zea	land Ltd 530	080		Signature:
Result	s To	☑ Mail Submi	tter	Condition Room Temp	Chilled Frozen VI
	nail Results <u>alan.spooner@ae</u>	com.com		Sample Analysis deta	ills checked
				Signature:	
	ADDITIONAL INFO)RWATIONE		Priority	Normal High
1				Urgent (ASAP, extra	a charge applies, please contact the lab first)
1					
				Decree at a d Poporting Date	· ·
				Requested Reporting Date	9:
Samp Waters	le Types E Effluent G GW Ground Water L SW Surface Water S	Geothermal Leachate Saline	Pot1	Potable Water (LAS/EU) Audit Monitoring Check Monitoring	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool
Control and Control Control	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste	Leachate Saline		Potable Water (LAS/EU) Audit Monitoring Check Monitoring	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant
Waters	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE	Leachate Saline Sediment	Pot1	Potable Water (LAS/EU) Audit Monitoring	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool
Waters Solids Other	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O Oil M	Leachate Saline Sediment	SL	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Waters Solids Other	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O Oil M Sample Name	Leachate Saline Sediment Miscellaneous Sample	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant
Solids Other No.	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O Oil M Sample Name NPYC (Leachate Saline Sediment Miscellaneous Sample Date & Time	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other No. 1	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O Oil M Sample Name	Leachate Saline Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other No. 1 2 3 4	E Effluent G GW Ground Water L SW Surface Water TW Trade Waste ES Soil SE O O Oil M Sample Name NPYC L NPYC Z NPYC 3	Leachate Saline Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other No. 1 2 3 4	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O O Oil M Sample Name NPYC I NPYC Z NPYC S NPYC G	Leachate Saline Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other No. 1 2 3 4	E Effluent G GW Ground Water L SW Surface Water TW Trade Waste ES Soil SE O O Oil M Sample Name NPYC L NPYC Z NPYC 3	Leachate Saline Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other No. 1 2 3 4 5 6 7	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O O Oil M Sample Name NPYC I NPYC 3 NPYC 4 NPYC 5 NPYC 8 NPRBS [Leachate Saline Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other No. 1 2 3 4 5 6 7 8	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O O Oil M Sample Name NPYC I NPYC 3 NPYC 4 NPYC 5 NPYC 8 NPRBS I NPRBS 1	Leachate Saline E Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O Oil M Sample Name NPYC I NPYC 3 NPYC 4 NPYC 5 NPYC 8 NPRBS I NPRBS 2 NPP - I	Leachate Saline Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material
Solids Other	E Effluent G GW Ground Water L SW Surface Water S TW Trade Waste ES Soil SE O O O Oil M Sample Name NPYC I NPYC 3 NPYC 4 NPYC 5 NPYC 8 NPRBS I NPRBS 1	Leachate Saline E Sediment Miscellaneous Sample Date & Time 4 / 11 / 15	SL FS	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/biota	Pot2 Potable Water (NZDWS) Pot3 Potable Water (other) Pool Swimming/Spa Pool PL Plant BM BM Biological Material

Appendix	No.1 - Chain of Custody - Page 2 of 2				150 1590
No.	Sample Name	Sample Date & Time	Sample Type	Tests Required	
		11/11/15			Received by: Tamara Calder
12	NPP-Z.	11/11/15°			3115015905
13					
14			,		
15				: ·	
16					
17					
18					
19					
20					
21	·				
22					
23		·			·
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34			·		
35					
36					
37		·			
38					
39					
40					

Appendix B

Test Pit Location Map

LEGEND

TEST PIT LOCATIONS

ф мс

MONITORING WELL LOCATIONS

SITE BOUNDARY

SITE LAYOUT PLAN NAVAL POINT - LYTTLETON

CHRISTCHURCH CITY COUNCIL

FIGURE

1

Appendix C

Test Pit Logs

BORE LOG

HOLE IDENTIFICATION ETPO

Client Christchurch City Council Locati

Project Naval Point DSI

Project number 60444747

Location Lyttleton

poi	SAMPLI	NG &	TESTING			MATERIAL DESC (consistency, relative density, wal		A N	STAINING/	_		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM		
	ETP01 0.2-0.3		0.0	-	X X X X X X X X X X X X X X X X X X X	SILT with minor sand; liginon-plastic. Gravelly SILT; brown. Mc sub-rounded Greywacke coarse; some plastic frag						
	ETP01 0.6-0.7		0.2	_	" x x x x x x x x x x x x x x x x x x x	Some cobbles, some rub						
	ETP01 1.2-1.3		0.2	- 1 - 1 -	**************************************			FILL				
	ETP01 1.5-1.6		70.5	_	x x x x x x x x x x x x x x x x x x x	Dark brown to black.			Moderate hydrocarbon odour. Possible coal tar.			
	ETP01 2.1-2.2		0.3	-2	X X X X X X X X X X X X X X X X X X X					$\overline{\sum}$		
				-		ETP01 terminated at 2	2.3m Target Depth					
	GROUNDWATER OBSERVATIONS Jumber Depth (m) Date _ 2.2m 19/10/2015					Date logged 19/10/2015 Logged SM Checked	Remarks				Driller Drill Rig Machine Excavator Started 19/10/2015 Finished 19/10/2015 Page 1 of 1	

BORE LOG

HOLE IDENTIFICATION

ETP02

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

p	SAMPLING & TESTING		MATERIAL DESC	MATERIAL DESCRIPTION		CTAINING/					
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)		GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
				_		Sandy fine to medium G light brown. Dry; gravel is sub-angular Greywacke.	RAVEL with minor silt; s sub-rounded to	FILL			
	ETP02 0.2-0.3		0.2	- - -	X X X X X X X X X X X X X X X X X X X	Sandy SILT; brown - gre	y. Moist, low plasticity.				
	ETP02 1.0-1.1		0.2	- - - 1 -	X X X X X X X X X X X X X X X X X X X	Some orange mottling.					
				- -	× × × × × × × × × × × × × × × × × × ×	SILT with minor clay; greplasticity.	y. Moist, moderate	NATURAL			
	ETP02 1.7-1.8		0.3	- - - 2 -	X X X X X X X X X X X X X X X X X X X	Some clay, high plasticity	<i>i</i> .	Z			
	ETP02 2.8-2.9		0.3	-							
				- 3 - - -	v - v1	ETP02 terminated at	3m Target Depth				
GRO	L DUNDWAT	ER C)BSERVA	L NOITA	⊥ NS	Date logged	Pemarke				Driller
	GROUNDWATER OBSERVATIONS Number Depth (m) Date _ 19/10/2015 Date logged Remarks				ام.		Drill Rig Machine				
	Logged SM No ground water encountered						Excavator Started 19/10/2015				
		Checked					Finished 19/10/2015				
L						AS					Page 1 of 1

BORE LOG

HOLE IDENTIFICATION

Client Christchurch City Council Loca

Project Naval Point DSI

Project number 60444747

Location Lyttleton

po	SAMPLI	NG &	TESTING		1 1	MATERIAL DESC		₽N N	STAINING/		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, piasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP03 0.2-0.3			-		Sandy GRAVEL with rag tree roots; brown.	ments of brick and				
	ETP03 0.8-0.9			- - - 1 -		Silty SAND with gravel and brown.	nd large cobbles; light				
	ETP03 1.5-1.6			- - - - -				FILL			
	ETP03 2.6-2.7			- - - - -		SILT; light brown. Some	plasticity.				
GRO	DUNDWAT	FR (DRSERVA	- - -	× × × × × × × × × × × × × × × × × × ×	ETP03 terminated at 3					
Num			n) Date		-	Date logged 20/10/2015 Logged HW Checked	Remarks No ground water end	ountere	od		Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1

BORE LOG

HOLE IDENTIFICATION

ETP04

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

po	SAMPLING & TESTING		MATERIAL DESCRIPTION (consistency, relative density, water content, plasticity, grading,		78	CTAINING/					
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP04 0.1-0.2 ETP04 0.4-0.6 SV		0.2	-		Sandy fine to coarse GR Dry; gravel is sub-rounde Greywacke with some vo Gravelly medium to coar Moist; gravel is fine to co	ed to sub-angular olcanic rock.				
	ETP04 0.7-0.8		0.8	_ - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SILT, grey. Moist, non pla	astic.		Faint hydrocarbon odour.		
				1 	X X X X X X X X X X X X X X X X X X X	Clayey SILT, grey. Moist	, moderate plasticity.				
	ETP04 1.6-1.7		6.4	- - -		Some dark grey staining		FILL			
				-2 - - -							
				- - -	X - X - X - X - X - X - X - X - X - X -						
				-3 - -	X *- x-	ETP04 terminated at 3	3m Target Depth				
	GROUNDWATER OBSERVATIONS lumber Depth (m) Date _			 S -	Date logged 19/10/2015 Logged SM Remarks 12.5 kg soil sample sieved and 500 g soil subsample collected for asbestos analysis. Very slow water seepage from ~2.5 m bgl. No ground water encountered			Driller Drill Rig Machine Excavator Started 19/10/2015 Finished 19/10/2015			
	Checked AS							Page 1 of 1			

DRILLHOLE LOG ENVIRONMENTAL GINT STD US LAB.GPJ BASE.GDT 11/12/15

BORE LOG

HOLE IDENTIFICATION ETP(

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

р	SAMPLING & TESTING				MATERIAL DESCRIPTION		ZZ OTAINING				
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)		GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP05 0.2-0.3 ETP05 1.5-1.6 ETP05 0.7-0.8			- - - - - - - - -		Fine SAND; dark grey, with rubbish and brick fragments SILT; dark grey with large fragments of building materials (e.g. concrete), slight plasticity.					
						SAND; dark grey.		NATURAL			
				- 3 - - -	<u> </u>	ETP05 terminated at	3m Target Depth				
GROUNDWATER OBSERVATIONS Number Depth (m) Date _					I I	Date logged 20/10/2015 Logged HW Checked	Remarks No ground water encountered			Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1	

BORE LOG

HOLE IDENTIFICATION

ETP06

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

pou	SAMPL	PLING & TESTING				MATERIAL DESC	RIPTION ter content, plasticity, grading,		-	ī.		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)		GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM	
	ETP06 0.2-0.3		0.1	-		Sandy fine to coarse GR brown. Dry; gravel is sub Greywacke and volcanic Silty medium to coarse S	-rounded to angular rock.					
	ETP06 0.9-1.0	ETP06 0.9-1.0		SILT; brown to grey. Moist Clayey SILT; grey with or moderate plasticity. Silty CLAY; grey. Moist, h	ty CLAY; grey. Moist, high plasticity.							
0.000			NDOED) (4	-								
Number Depth (m) Date _ 1 L						Date logged 19/10/2015 Logged SM Checked	Remarks Water seeping from approximately 2.5 m bgl. No ground water encountered			Driller Drill Rig Machine Excavator Started 19/10/2015 Finished 19/10/2015		
	AS								Page 1 of 1			

□

Sample

ETP07 0.3-0.4 ETP07 0.3-0.4 SV

ETP07 0.5-0.6

Drilling Method Casing remarks

BORE LOG

MATERIAL DESCRIPTION

(consistency, relative density, water content, plasticity, grading, etc)

Sandy fine to coarse GRAVEL; light brown. Dry; gravel is sub-rounded to angular

Brown with some dark grey staining. some silt. Building materials (e.g. brick, concrete, wood).

Sand is light yellow to brown and orange.

Greywacke and volcanic rock.

HOLE IDENTIFICATION

GEOLOGICAL DESCRIPTION

Christchurch City Council Client

Graphic Log

Depth

Project Naval Point DSI

(mdd)

吕

0.1

0.2

Project number 60444747

SAMPLING & TESTING

Analysis

Lyttleton Location Co-ordinates STAINING/ Groundwater **ODOURS** WELL DIAGRAM AND **COMMENTS**

Plastic sheeting. Coarse SAND; black. Moist. Clayey SILT; grey. Moist, low plasticity. ETP07 1.2-1.3 0.2 Η DRILLHOLE LOG ENVIRONMENTAL GINT STD US LAB.GPJ BASE.GDT 11/12/15 SAND, dark grey. Wet. 3 ETP07 terminated at 3m Target Depth **GROUNDWATER OBSERVATIONS** Driller Date logged Remarks Number Depth (m) Date 19/10/2015 16.0 kg soil sample sieved and 500 g soil subsample Drill Rig Machine collected for asbestos analysis. Water seeping from Logged Excavator approximately 1.8 m bgl. Started 19/10/2015 SM No ground water encountered Finished 19/10/2015 Checked Page AS of 1 Date Printed:

HOLE IDENTIFICATION

ETP08

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

g	SAMPLI	NG &	TESTING			MATERIAL DESC		J Z	CTAINING/		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP08 0.2-0.3		2.6	-		Sandy fine to coarse GR cobbles; brown. Moist; g angular Greywacke and	AVEL with minor ravel is sub-rounded to volcanic rock.				
	ETP08 0.8-0.9		2.5	- - - 1	* * . * * * * S	Building materials (e.g. b Bandy SILT; grey with or ion-plastic.		FILL			
	ETP08 1.8-1.9		1.6		* * * * * * * * * * * * * * * * * * *	Clayey SILT; dark grey. I plasticity. Silty fine SAND; dark gre		SAL	Estuarine odour		
	ETP08 2.7-2.8		1.5	- - - - - - 3	X (X (X) X	ETP08 terminated at	2.9m Target Depth	NATURAL			
	ROUNDWATER OBSERVATIONS Imber Depth (m) Date _				NS -	Date logged 22/10/2015 Logged SM	Remarks No ground water end	countere	ed		Driller Drill Rig Machine Excavator Started 22/10/2015
						Checked AS					Finished 22/10/2015 Page 1 of 1

BORE LOG

HOLE IDENTIFICATION ETPOS

Client Christchurch City Council Loca

Project Naval Point DSI

Project number 60444747

Location Lyttleton

р	SAMPLI	NG &	TESTING		I I	MATERIAL DESC		4 Z	STAINING/		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
Drii O	ETP09 0.1-0.2 ETP09 0.1-0.3 SV	An	0.4		S D G S D	andy fine GRAVEL with any; gravel is sub-rounde freywacke and volcanic states. ILT with minor sand; lig lasticity. ilty CLAY; grey. Moist, r	ht grey. Moist, Low	FILL GE	Estuarine odour	<u>15</u>	
				- - 3 -		ETP09 terminated at \(\)	3.1m Target Depth			-	
GRC			DBSERV# n) Date -	L MOITA	I NS	Date logged 21/10/2015 Logged SM Checked	Remarks 12.0 kg soil sample s collected for asbestos approximately 1.8 m	ieved a s analys bgl.	nd 500 g soil subsan sis. Water seeping fro	nple om	Driller Drill Rig Machine Excavator Started 21/10/2015 Finished 21/10/2015 Page 1 of 1

HOLE IDENTIFICATION

Client Christchurch City Council Location Lyttleton

Project Naval Point DSI

Project number 60444747

Co-ordinates

SAMPLING & TESTING MATERIAL DESCRIPTION GEOLOGICAL DESCRIPTION Drilling Method Casing remarks (consistency, relative density, water content, plasticity, grading, etc) STAINING/ Graphic Log Groundwater **ODOURS** □ PID (ppm) WELL DIAGRAM AND Analysis Sample Depth COMMENTS Sandy SILT; light brown. Dry; sand is fine. 0.0 ETP10 0.2-0.3 SILT with minor clay; brownish grey with faint orange staining. Moist, low plasticity. ETP10 0.8-0.9 0.0 Ⅱ Clayey SILT; grey. Moist, moderate plasticity. ETP10 1.8-1.9 0.2 Silty CLAY; dark grey. Moist, high plasticity. 2 0.2 Fine SAND; dark grey. Wet. - 3 ETP10 terminated at 3m Target Depth **GROUNDWATER OBSERVATIONS** Date logged Driller Remarks Number Depth (m) Date 20/10/2015 Water seeping from approximately 1.0 m bgl. Drill Rig Machine Logged Excavator No ground water encountered Started 20/10/2015 SM Finished 20/10/2015 Checked AS Page of 1

HOLE IDENTIFICATION

Client Christchurch City Council Location Lyttleton

Naval Point DSI Project

Project number 60444747

				T								
po "	SAMPLI	NG &	TESTING			MATERIAL DESC (consistency, relative density, wa		정동	STAINING/	<u>_</u>		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	content, presidity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	W	ELL DIAGRAM
					* * · × · × · × S	Sandy SILT; light brown.	Dry, non-plastic, sand					
					* x · x · x x 18 * x · x · x · x * x · x · x · x	silite.						
	ETP11 0.2-0.3		0.0		* * * * * * * * * * * * * * *							
				-	* *. * * * * * * * * * * * * * * * *							
					* x							
					* × × × × · · ·	Clayey SILT; brown to gr taining. Moist, low plast	rey with orange					
					~~~~ ~~~~~ ~~~~~	tairiirig. Moist, low plast	oity.					
					* * * * * * * * * * * * * * * * * * *							
					* <u>*</u> ***							
	ETP11 0.9-1.0		0.1		X							
				<u></u> '	****** *******							
					××××××							
					~~~~ ~~~~~ ~~~~~~							
				-								
				_	* × × × × × × × × × × × × × × × × × × ×			FIL				
				-	*_*_*_* *_*_*_*							
				-	* ^ * ^ * ^ * * * * * * * * * * * *							
				-	××××× ××××××							
				-	* <u>*</u> * <u>*</u> *.	Silty CLAY: dark grey M	oist moderate					
	ETP11 2.0-2.1		0.1	-2	P	silty CLAY; dark grey. M lasticity.	0.0.,000.0.0					
	2.0-2.1			-	<u>-1-2-1</u> ××××× s	Silty fine SAND with mine	or clay, dark grey.					
						Noist.						
				-	x::::x::: :::x:::x:: x::::x:::x::							
				-	x x x x							
				_	x:0:x:0: ::x:::x: x:::x:::							
				-	X							
					x :							
					1.1 X . 1.1 X . X . 1. X . 1. 1 1.1 X . 1.1 X .							
						ETP11 terminated at	2.9m Target Depth					
				-3			- '					
				-								
CDC	UNDWAT		Decov.	L L	10	1					T	
Num			n) Date		NO	Date logged 20/10/2015	Remarks				Driller	
	. 50	(1	, Duit	-	-	Logged	No ground water end	ountere	d		Drill Ri	Excavator
						SM						d 20/10/2015
						Checked						ed 20/10/2015
						AS	P			Pa	ge 1 of 1	

HOLE IDENTIFICATION

ETP12

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

	SAMPLI	NG & T	ESTING			MATERIAL DESC	RIPTION	.7			
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	m	(consistency, relative density, wa etc)		GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP12 0.1-0.2		0.0	-	X	Sandy SILT; light brown. nedium.	Dry; sand is fine to				
	ETP12 1.0-1.1		0.0	- - - -1 -	S P	SILT with some clay; bro plasticity.	wn to grey. Moist, low	FILL			
	ETP12 1.8-1.9		0.1	- - - - 2 -		Silty CLAY; grey. Moist, r					
	ETP12 2.7-2.8		0.2								
				- - -		ETP12 terminated at					
GRC Num	OUNDWAT ber Dep		BSERVA	ATION	NS -	Date logged 20/10/2015 Logged SM Checked	Remarks No ground water enc	ountere	d		Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1

HOLE IDENTIFICATION

ETP13

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

po "	SAMPLI	NG &	TESTING			MATERIAL DESC (consistency, relative density, wa		AN ON	STAINING/	ı.	
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	coronicin, piddioty, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP13 0.1-0.2 ETP13 0.2-0.3 SV		1.8	-	V X X X X X X X X X X X X X X X X X X X	Sandy SILT with gravel; s fine, gravels are sub-ro up to 200mm.	light brown, Dry, sand ounded to angular and				
	ETP13 0.8-0.9		1.4	- - - - 1 -	X X X X X X X X X X X X X X X X X X X	SILT; grey. Moist, non-pl	astic.		Mottled black colour in places. Estuarine smell.		
	ETP13 1.7-1.8		1.1	- - - - - 2	* * * * * * * * * * * * * * * * * * *	Minor clay Silty CLAY; dark grey. M Dlasticity.	oist, moderate	FILL			
	ETP13 2.9-3.0		1.1	3		ETP13 terminated at .	3.1m Target Depth				
	GROUNDWATER OBSERVATIONS Number Depth (m) Date _					Date logged 21/10/2015 Logged SM Checked	Remarks 12.5 kg soil sample s collected for asbesto No ground water end			nple	Driller Drill Rig Machine Excavator Started 21/10/2015 Finished 21/10/2015 Page 1 of 1

Client

BORE LOG

HOLE IDENTIFICATION

Christchurch City Council Location Lyttleton

Naval Point DSI Project

Project number 60444747

pou	SAMPLI	NG &	TESTING			MATERIAL DESC (consistency, relative density, wa		ON ON	STAINING/	<u></u>	
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	or contain, preciory, greening,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP14 0.3-0.4		0.3	-		Sandy SILT with minor construction SAND with minor clay; or					
	ETP14 1.2-1.3			- - 1 - - - - -		Clayey SILT; dark grey w Moist, plastic.	with orange mottles.	FILL			
	ETP14 2.3-2.4			- - - - - -		SAND; dark grey. Moist.					
	-3 *x.x.x.				X	SILT; light grey. Plastic. ETP14 terminated at 3	3m Target Depth				
	GROUNDWATER OBSERVATIONS Number Depth (m) Date _					Date logged 20/10/2015 Logged HW Checked AS	Remarks No ground water end	ountere	d		Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1

DRILLHOLE LOG ENVIRONMENTAL GINT STD US LAB.GPJ BASE.GDT 11/12/15

BORE LOG

HOLE IDENTIFICATION

ETP15

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

p	SAMPLII	NG &	TESTING			MATERIAL DESC		٦Z	OTAINING/		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP15 0.2			-		Sandy SILT; light brown.	Dry; sand is fine.				
	ETP16 0.7-0.8			- - - - 1 -		Minor clay, some orange	staining.				
	ETP15 1.5-1.6			- - - - - 2		Clayey SILT; dark grey. I olasticity.	Moist; moderate	FILL			
	ETP15 2.8-2.9			- - - - - -							
				_		ETP15 terminated at 3	3.1m Target Depth				
	GROUNDWATER OBSERVATIONS Number Depth (m) Date _					Date logged 20/10/2015 Logged SM Checked	Remarks Water seeping from a No ground water enc				Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1

HOLE IDENTIFICATION

ETP16

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

g	SAMPLI	NG & T	TESTING			MATERIAL DESC	RIPTION	48	STAINING/		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP16 0.2-0.3			-	X X X X X X X X X X X X X X X X X X X	Sandy SILT; light brown. SILT; orange mottled. Mo					
	ETP16 1.1-1.2			- - - - 1 -	X X X X X X X X X X X X X X X X X X X	Clayey SILT; grey. Moist.	low plasticity.				
	ETP16 1.9-2.0			- - - -			padeosy.	FILL			
	1.9-2.0			- 2 - - - -		Silty CLAY; dark grey. Me plasticity.	pist, moderate				
	ETP16 3.2-3.3			- - 3 - -		Fine SAND; dark grey. N					
:	GROUNDWATER OBSERVATIONS Number Depth (m) Date _					Date logged 20/10/2015 Logged SM Checked	Remarks No ground water encountered			Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1	

HOLE IDENTIFICATION

Client Christchurch City Council Location

Naval Point DSI Project

Project number 60444747

Lyttleton

po	SAMPLI	NG &	TESTING			MATERIAL DESC	RIPTION	A N	STAINING/	_	
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	or contain, producty, growing,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP17 0.2			_	x	Silty SAND; brown.			fragments of building materials (e.g. brick)		
	ETP17 1-1.1			- - - - - - - -		SILT; grey with orange n	nottles.	FILL			
	ETP17 2.2			- 2 		SILT; dark grey.Moist, m coal fragments.	oderate plasticity, with				
	ETP17 2.8				x x x x x x x x x x x x x x x x x x x						
						ETP17 terminated at	3m Target Depth				
	GROUNDWATER OBSERVATIONS Number Depth (m) Date _					Date logged 20/10/2015 Logged HW Checked	Remarks No ground water end	ountere	ed		Driller Drill Rig Machine Excavator Started 20/10/2015 Finished 20/10/2015 Page 1 of 1

BORE LOG

HOLE IDENTIFICATION

ETP18

Client Christchurch City Council

Project Naval Point DSI

Location Lyttleton

Co-ordinates Project number 60444747 SAMPLING & TESTING MATERIAL DESCRIPTION GEOLOGICAL DESCRIPTION Drilling Method Casing remarks (consistency, relative density, water content, plasticity, grading, etc) STAINING/ Graphic Log Groundwater **ODOURS** □ PID (ppm) WELL DIAGRAM AND Sample Analysis Depth **COMMENTS** Sandy fine to coarse GRAVEL; light brown.Dry; gravel is sub-rounded to sub-angular Greywacke. ETP18 0.1-0.3 SV ETP18 0.2-0.3 0.3 SILT; dark grey to brown. Moist. Orange brown. Sandy SILT; grey with orange staining. Moist, non-plastic. ETP18 0.8-0.9 0.4 Silty CLAY; grey. Moist, moderate plasticity. 긆 ETP18 1.9-2.0 0.4 2 ETP18 terminated at 3.3m Target Depth **GROUNDWATER OBSERVATIONS** Date logged Driller Remarks Number Depth (m) Date 21/10/2015 12.5 kg soil sample sieved and 500 g soil subsample Drill Rig Machine collected for asbestos analysis. Water seeping from Logged Excavator approximately 1.6 m bgl. Started 21/10/2015 SM Finished 21/10/2015 Checked

AS

1

of

Page

BORE LOG

HOLE IDENTIFICATION

ETP19

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

p [SAMPL	ING &	TESTING			MATERIAL DESC		48	STAINING/		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ater content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP19 0.2-0.3 SV ETP19 0.2-0.3		0.1	- - - -		Sandy fine GRAVEL with Dry; gravel is sub-round greywacke and volcanic	h minor silt; light brown. ed to sub-angular rock.		Building materials (e.g. brick, ceramic and concrete)		
	ETP19 0.9-1.0		1.0	- - - - 1 -		SILT; grey. Moist, non-pi	lastic				
	ETP19 1.8-1.9		1.7	- - - - - - - 2		Minor clay Clayey SILT; grey. Moist	t, moderate plasticity.	FILL			
	ETP19 2.8-2.9		1.8	- 3		ETP19 terminated at	3m Target Depth				
GRO Numi	DUNDWAT		DBSERV			Date logged 21/10/2015 Logged SM Checked	Remarks 12.5 kg soil sample collected for asbest approximately 1.9 m	sieved a os analys n bgl.	nd 500 g soil subsan sis. Water seeping fro	nple	Driller Drill Rig Machine Excavator Started 21/10/2015 Finished 21/10/2015 Page 1 of 1

BORE LOG

HOLE IDENTIFICATION

ETP20

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

po	SAMPLI	NG &	TESTING			MATERIAL DESC	RIPTION	₽ _N	STAINING/	L	
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, piasticity, grading.	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP20 0.1-0.2		0.5	-	******* C	Sandy fine to medium G Dry; gravel is sub-rounde Greywacke Sandy SILT; yellow-brow Ion-plastic.	ed to sub-angular				
	ETP20 0.7-0.8		0.4	- - - - 1	**************************************						
	ETP20 1.4-1.5		0.3	- - - -		lark brown patches, larg ock.	e cobbles of volcanic	FILL	Fill materials (e.g. concrete, wood and steel piping)		
	ETP20 2.2-2.3		0.3	- -2 - - -	S S	SILT; grey. Moist, Non-pl	astic.			-	
				- - - 3 -	X X X X X X X X X X X X X X X X X X X	ETP20 terminated at 3	3.2m Target Depth				
	GROUNDWATER OBSERVATIONS Jumber Depth (m) Date _					Date logged 21/10/2015 Logged SM Checked	Remarks Water seeping from a No ground water end				Driller Drill Rig Machine Excavator Started 21/10/2015 Finished 21/10/2015 Page 1 of 1

HOLE IDENTIFICATION

Client Christchurch City Council

Project Naval Point DSI Location Lyttleton

Co-ordinates Project number 60444747 SAMPLING & TESTING MATERIAL DESCRIPTION GEOLOGICAL DESCRIPTION Drilling Method Casing remarks (consistency, relative density, water content, plasticity, grading, etc) STAINING/ Graphic Log Groundwater **ODOURS** □ PID (ppm) WELL DIAGRAM Analysis AND Sample Depth **COMMENTS** Sandy SILT with some gravel; light brown. Dry, Building materials (e.g. brick, steel and glass) sub-rounded to sub-angular. ETP21 0.1-0.2 0.1 Large concrete fragments ETP21 0.7-0.8 0.3 FIL ETP21 1.4-1.5 0.4 DRILLHOLE LOG ENVIRONMENTAL GINT STD US LAB.GPJ BASE.GDT 11/12/15 ETP21 terminated at 1.7m Unable to advance due to hole collaspe **GROUNDWATER OBSERVATIONS** Date logged Driller Remarks Number Depth (m) Date 21/10/2015 Drill Rig Machine No ground water encountered Logged Excavator Started 21/10/2015 SM Finished 21/10/2015 Checked

AS

of 1

Page

HOLE IDENTIFICATION

ETP22

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

р	SAMPLING & TESTING MATERIAL DESCRIPTION (consistency, relative density, water content, plasticity, grading, etc) STAINING ODOLIR							ON ON	STAINING/	۲	
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa	rer content, piasucity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
(ETP22 0.2-0.4 SV ETP22 0.2-0.3		1.0	-		sandy fine to coarse GR Dry; gravel is sub-rounde Greywacke and volcanic Brown.	AVEL; light brown. ed to sub-angular rock.				
E	ETP22 0.5 BLK ETP22 0.6-0.8 SV ETP22 0.6-0.7		0.5						Fill material (e.g. large volcanic rock fragment, brick, steel, cement sheeting, glass and general waste material.		
	ETP22 1.6-1.7		0.7	- 1 	0	SILT; grey. Moist, non-pl	astic.	FILL			
	ETP22 2.6-2.7			- - - -	* * * * * * * * * * * * * * * * * * *	Silty CLAY; dark grey. M lasticity.					
GROU Numbe	ROUNDWATER OBSERVATIONS umber Depth (m) Date _					Date logged 21/10/2015 Logged SM Cone 14.5 kg and one 12.5 kg soil sample sieved and 500 g soil subsamples collected for asbestos analysis. Water seeping from approximately 2.2 m bgl.			and	Driller Drill Rig Machine Excavator Started 21/10/2015	
						Checked	No ground water end				Finished 21/10/2015

HOLE IDENTIFICATION

ETP23

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

SAMPLING & TESTING						MATERIAL DESCRIPTION (consistency, relative density, water content, plasticity, grading,		팅 STAINING/			
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM
	ETP0.2-0.4 SV ETP23 0.2-0.3		1.3	-	51 Si	andy fine to coarse GR rown. Moist; gravel is su ub-angular greywacke a graphacke a 'ellow brown	arse GRAVEL with some silt; avel is sub-rounded to wacke and volcanic rock.				
	ETP23 0.8-0.9		1.3		B B	Brown	1				
	ETP23 1.2-1.3		1.3		S	Sandy medium GRAVEL; black. Moist; sand is coarse. Sandy SILT with minor clay; grey. Moist, low plasticity.					
					* * * * * * S						
	ETP23 2.2-2.3		0.9			some clay, moderate pla	isticity.	FILL			
						ETP23 terminated at 3.1m Target Depth					
				_							
	 DUNDWAT nber De		DBSERV <i>A</i> n) Date	ATION	I I	Date logged 22/10/2015 Logged SM Checked AS	Remarks Water seeping from a				Driller Drill Rig Machine Excavator Started 22/10/2015 Finished 22/10/2015 Page 1 of 1

HOLE IDENTIFICATION

ETP24

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

SAMPLING & TESTING				MATERIAL DESCRIPTION (consistency, relative density, water content, plasticity, grading,		ION	STAINING/	Į.				
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	or correct, precionly greating	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM	
	ETP24 0.2-0.3		1.8	-	ິ່•ໍ່•ໍ່• ເຂົ້າ	Sandy fine to coarse GR and trace cobbles; brown sub-rounded to angular (olcanic rock.	AVEL with some silt n. Moist; gravel is Greywacke and					
	ETP24 0.7-0.8		1.6	- - - -	* 0 × 0 × 0 9 9 0 × 0 × 0 × 0 S 9 0 × 0 × 0 9 9 0 × 0 × 0 9 9 0 × 0 × 0	Silty fine to coarse GRA\ grey. Moist; gravel is sub some wood present.	/EL with minor sand; -rounded Greywacke;		Faint hydrocarbon odour			
					x x x x x x x x x x x x x x x x x x x	SILT with some fine sand	t; grey. Moist.					
	ETP24 2.0-2.1				x x x x x x x x x x x x x x x x x x x	Some clay. moderate plasticity. Fine SAND with minor silt; grey. Moist.		FILL				
			0.8									
					F							
				-3 - -		ETP24 terminated at 3	3m Target Depth					
GROUNDWATER OBSERVATIONS Number Depth (m) Date _ Date logged 22/10/2015 Water seeping from approximately 1.7 m bgl. Logged SM Checked AS								Driller Drill Rig Machine Excavator Started 22/10/2015 Finished 22/10/2015 Page 1 of 1				

HOLE IDENTIFICATION

ETP25

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

	-,		0044									
pou	SAMPLI	SAMPLING & TESTING				MATERIAL DESC	RIPTION ter content, plasticity, grading.	GEOLOGICAL DESCRIPTION	STAINING/	3		
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	te)	relative density, water content, plasticity, grading,		ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM	
	ETP25 0.1-0.2		1.1	_	0 .0 . 0.	andy fine to coarse GR avel is sub-rounded to reywacke and volcanic rownish-grey; some bri						
	ETP25 0.6		0.9	_	0	ILT with minor fine sand	d; grey. Moist.					
	ETP25 0.9-1.0		0.7	- 1 -								
	ETP25 1.8-1.9		39.2	- - - - -	* * * * * * * * * * * * * * * * * * *	layey SILT; grey with datches. Moist, low plast	ark grey to black icity.	FILL	Moderate hydrocarbon odour.			
				-	Solver Sol	Some fine sand						
	ETP25 2.8-2.9		0.6		CI	layey SILT.						
						ETP25 terminated at	3m Target Depth					
GRC Num	DUNDWAT		DBSERVAm) Date	 MOITA -		Date logged 22/10/2015 Logged SM Checked	Remarks Water seeping from	approxim	mately 1.5 m bgl.		_ E	

HOLE IDENTIFICATION

Client Christchurch City Council

Project Naval Point DSI

Project number 60444747

Location Lyttleton

g	SAMPLI	SAMPLING & TESTING MATERIAL DESCRIPTION										
Drilling Method Casing remarks	Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, gra etc)		GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	WELL DIAGRAM	
	ETP26 0.2-0.3		0.6	-	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	andy fine to coarse GR bry; gravel is sub-rounde ireywacke and volcanic frown, some silt, some b foist						
	ETP26 0.8-0.9		0.8	- - - - - - -	0	SILT with minor clay and ow plasticity.	fine sand; grey. Wet,	FILL		$\overline{\square}$		
				-2		ETP26 terminated at 2	2m Target Depth					
GRC Num			DBSERV <i>A</i> n) Date 22/10/20	_	IS -	Date logged 22/10/2015 Logged SM Checked	Remarks				Driller Drill Rig Machine Excavator Started 22/10/2015 Finished 22/10/2015 Page 1 of 1	

Appendix D

Photographs

Project No.: 60444747 Client: Site Location: Christchurch City Council Naval Point - Lyttleton Photo. No.: Date: 19/10/15 01 Test Pit ETP03

Photographic Log

Client: Site Location: Project No.:
Christchurch City Council Naval Point – Lyttleton 60444747

Photo. No.: Date: 19/10/15

Test Pit ETP03 with groundwater well.

Photographic Log

Client: Site Location: Project No.:
Christchurch City Council Naval Point – Lyttleton 60444747

Photo. No.: Date: 19/10/15

Test Pit ETP05 with groundwater well.

Project No.: 60444747 Client: Site Location: Christchurch City Council Naval Point – Lyttleton Photo. No.: Date: 19/10/15 05 Test Pit ETP07

Project No.: Client: Site Location: Naval Point - Lyttleton Christchurch City Council 60444747 Photo. No.: Date: 22/10/15 06 Test Pit ETP08

Client:

Christchurch City Council

Site Location: Naval Point – Lyttleton Date:

Project No.: 60444747

20/10/2015 07 Test Pit ETP10 with groundwater well.

Photo. No.:

 Photographic Log

 Client:
 Site Location:
 Project No.:

 Christchurch City Council
 Naval Point – Lyttleton
 60444747

Photo. No.: Date: 20/10/2015

Test Pit ETP12 with groundwater well.

 Photographic Log

 Client:
 Site Location:
 Project No.:

 Christchurch City Council
 Naval Point – Lyttleton
 60444747

Photo. No.: Date: 09 21/10/2015

Test Pit ETP13

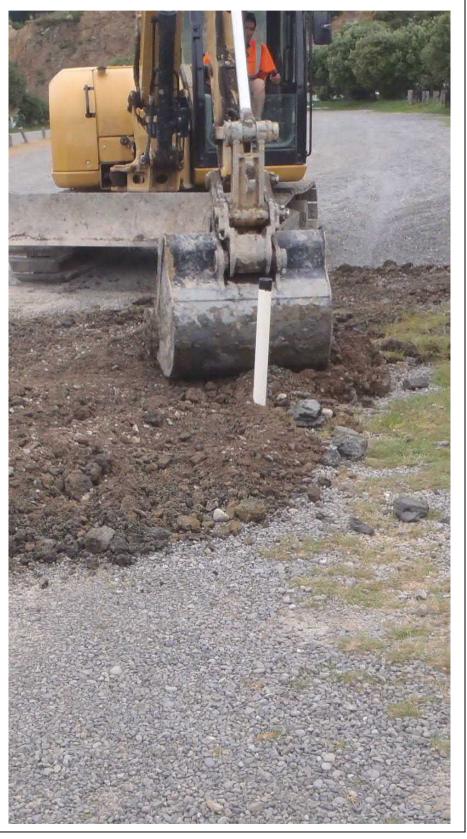
Photographic Log

Client:

Christchurch City Council

Photo. No.: Date: 20/10/2015

Test Pit ETP15 with groundwater well.



Photographic Log

Client:Site Location:Project No.:Christchurch City CouncilNaval Point – Lyttleton60444747

Photo. No.: Date: 21/10/2015

Test Pit ETP18 with groundwater well.

 Photographic Log

 Client:
 Site Location:
 Project No.:

 Christchurch City Council
 Naval Point – Lyttleton
 60444747

Photo. No.: Date: 21/10/2015

Test Pit ETP20

Photographic Log

Client:

Christchurch City Council

Site Location:
Naval Point – Lyttleton

Project No.: 60444747

Photo. No.: Date: 21/10/2015

Test Pit ETP20 with groundwater well.

Photographic Log

Christchurch City Council

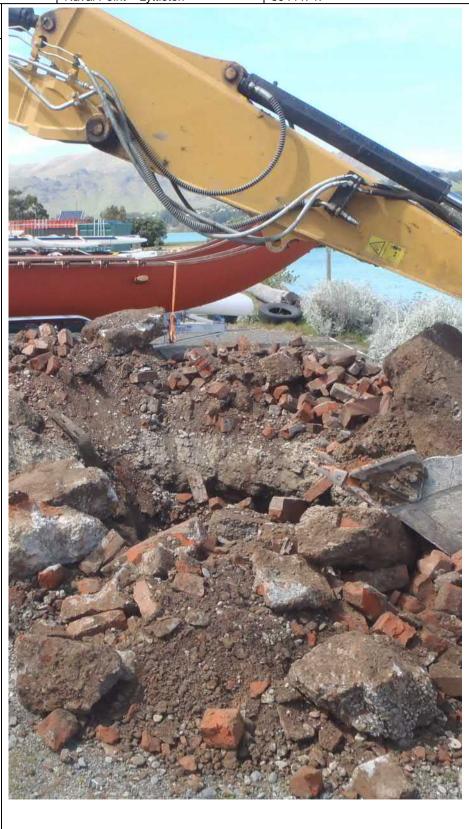

Site Location: Naval Point – Lyttleton Project No.: 60444747

Photo. No.: 14

Client:

Date: 21/09/2015

Test Pit ETP21

Project No.: 60444747 Client: Site Location: Christchurch City Council Naval Point - Lyttleton Photo. No.: Date: 21/10/15 15 Test Pit ETP22

Project No.: 60444747 Client: Site Location: Christchurch City Council Naval Point - Lyttleton Photo. No.: Date: 21/10/2015 16 Test Pit ETP22

Photographic LogClient:Site Location:Project No.:Christchurch City CouncilNaval Point – Lyttleton60444747

Photo. No.: Date: 17 22/10/15

Test Pit ETP23

Client: Site Location: Project No.: Christchurch City Council 60444747 Naval Point – Lyttleton Photo. No.: Date: 22/10/15 18 Test Pit ETP23

Appendix E

Soil Analytical Result Tables

AECOM Location ID	ETP01	ETP02	E'	TP03	E	FP04	I	TP05	ETP06	ETP	07	ET	P08	ETP09	ETP10	ETP11	ETP12	ETP13	1					
AECOM Field ID	ETP01 1.5-1.6	ETP02 0 2-0 3	ETP03 0 2-0 3	ETP03 1.5-1.9	ETP04 0.7-0.8	ETP04 1.6-1.7	ETP05 0 7-0 8	ETP05 1.5-1.6	ETP06 0 9-1 0	ETP07 0 1-0 2	ETP07 1.2-1.3	ETP08 0.2-0.3	ETP08 1.8-1.9	ETP09 1.1-1.2	ETP10 0.8-0.9	ETP11 0.2-0.3	ETP12 1.0-1.1	ETP13 0 8-0 9	National Environmental Standard for	National Environmental Standard for	Environment Canterbury Background	Environment Canterbury		. 3
aboratory Sample Reference	1490864.4		1491304.1		1490864 11	1490864 12	1491304.18		1490864 14	1490864 16	1490864 18		1492225 16	1492225.26			1491304.14	1491304.29	Contaminated Land (2012) 1	Contaminated Land (2012) 1	Concentrations	Background Concentrations	USEPA	A ³ USE
anoratory Sample Reference	1490864.4	1490864.6 19/10/2015	20/10/2015	1491304.3 20/10/2015	1490864.11	1490864.12 19/10/2015	1491304.18 20/10/2015	1491304.19 20/10/2015	1490864.14 19/10/2015	1490864.16 19/10/2015	1490864.18 19/10/2015	1492225.14 22/10/2015	1492225.16 22/10/2015	21/10/2015	1491304.25 20/10/2015	1491304.21 20/10/2015	20/10/2015	21/10/2015	1 1					
epth (m bgl)	19/10/2013	0.2	0.2	1.5	0.7	19/10/2013	0.7	20/10/2015	0.9	0.1	19/10/2013	0.2	1.8	1.1	0.8	0.2	20/10/2013	0.8	1 1					
ID Headspace Reading (ppm)	70.5	0.2	0.2	- 13	0.7	1.6	0.7	1.5	0.9	0.1	0.2	2.6	1.6	0.3	0.8	0.2	0.0	1.4	1		Yellow Glev Earth	Yellow Glev Earth		
	70.3 SILT	SILT	SAND	0 Silty SAND	SILT	SILT	SAND	SILT	SILT	GRAVEL	SILT	GRAVEL	SILT	SILT	SILT	Sandy SILT	SILT	SILT	i I		Tellow Gicy Lantin	renow dicy Earth		
uideline Soil Type 3	SIL1	SILI	SAND	Silty SAND	SIL1	SIL1	SAND	SIL1	SIL1	GRAVEL	SIL1	GRAVEL	SIL1	SILI	SIL1	Sandy SIL1	SIL1	SIL1	i I					
Observations	Black colouring, moderate hydrocaarbon odou	r			Faint hydrocarbon odour	Faint hydrocarbon odour													Recreational Landuse ²	Commercial Landuse ²	Trace Elements Level 1	Trace Elements Level 2	Resident Soil (mg/	tial Indu: /kg) Soil (n
Metals Trace																								
otal Recoverable Arsenic (mg/kg dry wt)	11	8	24	3	8	9	14	8	10	< 2	9	< 2	6	7	6	8	8	8	80	70	4.6	4.9		
otal Recoverable Cadmium (mg/kg dry wt)	0.82	< 0.10	0.34	< 0.10	< 0.10	< 0.10	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	400	1300	0.11 (0.18)	0.13(0.195)		
otal Recoverable Chromium (mg/kg dry wt)	22	24	23	15	24	27	17	25	24	9	25	10	20	22	23	25	23	26	>10,000	>10,000	15.6	16.9		
otal Recoverable Copper (mg/kg dry wt)	57	13	198	15	11	11	100	11	11	46	10	108 #1	6	9	9	14	9	11	>10,000	>10,000	11.5	12.4		
stal Recoverable Lead (mg/kg dry wt)	590	29	450	18.2	26	27	156	27	25	16.3	25	16.6#1	18.6	23	22	30	22	27	880	3300	18.8	21.3		
stal Recoverable Mercury (mg/kg dry wt)	0.56	0.34	16.9	< 0.10	0.21	< 0.10	0.19	0.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.26	0.12	0.22	1800	4200	0.1	0.11		
otal Recoverable Nickel (mg/kg dry wt)	18	19	15	19	19	21	16	18	18	29	19	27	13	16	17	18	17	19	-	=	11.6	13.1		
otal Recoverable Zinc (mg/kg dry wt)	320	87	380	57	84	91	179	84	81	69	85	83	61	80	79	88	79	88	-	=	62.4	69.6		
Tributyl Tin Trace in Soil samples by GCMS																								\Box
butyltin (as Sn) (mg/kg dry wt)										0.016		0.011		< 0.005									19	25
onobutyltin (as Sn) (mg/kg dry wt)										0.056		0.008		< 0.007										
ibutyltin (as Sn) (mg/kg dry wt)										0.013		0.018		< 0.004									23	3.5
riphenyltin (as Sn) (mg/kg dry wt)	1	1	1	1	1	1				< 0.003	1	< 0.003	1	< 0.003	1	1	1	1	i					\neg

	1					1															1		$\overline{}$	т —
AECOM Location ID	ETP14	ETP15	ETP16	ETP17	ETP18	ETP19	ETP20	ETP21	ETP22	ETP22	E	TP23	ET	P24	ETI	P25	ET	P26						
AECOM Field ID	ETP14 0.2-0.3	ETP15 1.5-1.6	ETP16 0.2	ETP17 2.2	ETP18 0.8-0.9	ETP19 1.8-1.9	ETP20 0.7-0.8	ETP21 0.1-0.2	ETP22 0.6-0.7	ETP22 2.6-2.7	ETP23 0.8-0.9	ETP23 1.2-2.2	ETP24 0.7-0.8	ETP24 2.0-2.1	ETP25 0.1-0.2	ETP25 1.8-1.9	ETP26 0.2-0.3	ETP26 0.8-0.9	National Environmental Standard for	National Environmental Standard for	Environment Canterbury Background	Environment Canterbury	USEPA ³	USEPA ³
Laboratory Sample Reference	1491304.5	1491304.11	1491304.38	1491304.44	1492225.23	1491304.34	1492225.19	1492225.28	1491304.37	1492225.32	1492225.11	1492225.12	1492225.8	1492225.9	1492225.3	1492225.5	1492225.1	1492225.2	Contaminated Land (2012) 1	Contaminated Land (2012) 1	Concentrations	Background Concentrations		
Date Sampled	20/10/2015	20/10/2015	20/10/2015	20/10/2015	21/10/2015	21/10/2015	21/10/2015	21/10/2015	21/10/2015	21/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015						, ,
Depth (m bgl)	0.2	1.5	0.2	2.2	0.8	1.8	0.7	0.1	0.6	2.6	0.8	1.2	0.7	2	0.1	1.8	0.2	0.8						, ,
PID Headspace Reading (ppm)	0.0	0.0	0.0	0.0	0.4	1.7	0.4	0.1	0.5	0.0	0.0	1.3	1.6	0.8	1.1	39.2	0.6	0.8			Yellow Gley Earth	Yellow Gley Earth		, ,
Guideline Soil Type ³	Sandy SILT	Clayey SILT	Sandy SILT	SILT	SILT	SILT	SILT	SILT	Sandy GRAVEL	CLAY	GRAVEL	GRAVEL	GRAVEL	SILT	GRAVEL	SILT	GRAVEL	GRAVEL					Residential	
Observations																			Recreational Landuse ²	Commercial Landuse ²	Trace Elements Level 1	Trace Elements Level 2) Soil (mg/kg)
Metals Trace																								
Total Recoverable Arsenic (mg/kg dry wt)	8	7	6	8	7	6	3	18	23	7	3	17	6	7	5	5	7	5	80	70	4.6	4.9		
Total Recoverable Cadmium (mg/kg dry wt)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	3.8	1.99	< 0.10	0.22	< 0.10	0.2	< 0.10	0.2	< 0.10	0.18	0.23	400	1300	0.11 (0.18)	0.13(0.195)		
Total Recoverable Chromium (mg/kg dry wt)	23	23	19	23	24	25	13	22	42	23	8	8	15	22	15	24	19	10	>10,000	>10,000	15.6	16.9		
Total Recoverable Copper (mg/kg dry wt)	12	9	10	12	11	11	6	230	470	10	43	27	32	8	29	8	590	91	>10,000	>10,000	11.5	12.4		
Total Recoverable Lead (mg/kg dry wt)	41	24	28	27	27	26	12.9	650	11,700	26	11.1	34	58	21	87	23	29	35	880	3300	18.8	21.3		
Total Recoverable Mercury (mg/kg dry wt)	< 0.10	0.12	0.15	< 0.10	0.42	0.19	< 0.10	4.3	4	0.15	< 0.10	0.11	0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	1800	4200	0.1	0.11		
Total Recoverable Nickel (mg/kg dry wt)	18	17	14	18	17	18	8	27	47	17	27	12	16	15	19	18	20	22	-	-	11.6	13.1		
Total Recoverable Zinc (mg/kg dry wt)	89	77	72	80	83	85	45	2,500	3,200	82	81	50	106	71	122	79	250	112	=	1	62.4	69.6		, ,
Tributyl Tin Trace in Soil samples by GCMS																								
Dibutyltin (as Sn) (mg/kg dry wt)									< 0.005									0.26					19	250
Monobutyltin (as Sn) (mg/kg dry wt)									< 0.007						·			0.081						
Tributyltin (as Sn) (mg/kg dry wt)									< 0.004						·			1.03					23	350
Triphenyltin (as Sn) (mg/kg dry wt)									< 0.003									< 0.003		·				

Bold - exceeds the National Environmental Standard for Contaminated Land (2011) Recreational Guideline

All concentrations in mg/kg dry weight.

National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health 2011.

Values taken from Table B2 in Appendix B 'Soil contaminant standards for health for inorganic substances (Recreational and Commerical).

VLSEPA Summary Regional Screening Tables

Table 8 Total Petroleum Hydrocarbons Soil Analytical Results compared to Applicable Tier I Guidelines and NES

AECOM

ECOM Location ID	ETP01	ETP02	ETP03	ETP03	ETP04	ETP04	ETP05	ETP05	ETP06	ETP07	ETP07	ETP08	ETP08	ETP09	ETP10	ETP11	ETP12	ETP13						,	1					
COM Field ID	ETP01 1.5-1.6	ETP02_0.2-0.3	-	ETP03 1.5-1.9	ETP04_0.7-0.8	ETP04 1.6-1.7	ETP05 0.7-0.8	ETP05 1.5-1.6	ETP06 0.9-1.0	ETP07 0.1-0.2	ETP07 1.2-1.3	ETP08 0.2-0.3	ETP08 1.8-1.9	ETP09 1.1-1.2	ETP10 0.8-0.9	ETP11 0.2-0.3	ETP12 1.0-1.1	ETP13 0.8-0.9	1						l					
poratory Sample Reference	1490864 4	1490864.6	1491304.1	1491304.3	1490864 11	1490864.12	1491304 18	1491304.19	1490864 14	1490864 16	1490864.18	1492225.14	1492225.16	1492225.26	1491304.25	1491304.21	1491304 14	1491304.29	MfE 1999	Guidelines (R	evised 2011)	: Tier 1 Soi	il Acceptan	ce Criteria ¹	MfE 1	999 Guidelines	s (Revised 20)	11): Tier 1 Soil	Acceptance ('riteria ¹
te Sampled	19/10/2015	19/10/2015	20/10/2015	20/10/2015	19/10/2015	19/10/2015	20/10/2015	20/10/2015	19/10/2015	19/10/2015	19/10/2015	22/10/2015	22/10/2015	21/10/2015	20/10/2015	20/10/2015	20/10/2015	21/10/2015	1					, ,	i					
pth (m bgl)	1.5	0.2	0.3	1.5	0.7	1.6	0.7	1.5	0.9	0.1	1.2	0.2	1.8	1.1	0.8	0.2	1	0.8	1					, ,	i					
D Headspace Reading (ppm)	70.5	0.0	0.0	0.0	0.8	6.4	0.0	1.5	0.2	0.1	0.2	2.6	1.6	0.3	0.0	0.0	0.0	1.4												
ideline Soil Type ³	SILT	Sandy GRAVEL	Sandy GRAVEL	SILT	SILT	SILT	Sandy SILT	SILT	SILT	Sandy GRAVEL	SILT	GRAVEL	SILT	SILT	SILT	Sandy SILT	SILT	SILT	All Path	ways Soil Acc	eptance Crite	eria for TPI	H - Residen	tial Use	A	d Pathways Soi	oil Acceptance	Criteria for TPI	H - Commen	ial
Observations	Black colouring, moderate hydrocaarbon odou	r				Faint hydrocarbon odour													Contaminati	ion Depth: Su	rface (<1m)	Contamir	nation Dept	th: 1m-4m	Contaminat	tion Depth: Surf			ination Deptl	: 1m-4m
																			Sandy silt	Sand	Clay	Sandy silt	Sand	Clay	Sandy silt	Sand	Clay	Sandy silt	Sand	Clay
Total Petroleum Hydrocarbons (TPH)																									<u>'</u>			└		⊥
C ₇ -C ₉ (mg/kg dry wt)	< 8	<9	<8	<8	<9	< 10	<8	< 9	< 9	< 8	< 9	< 8	< 9	< 9	< 9	< 9	< 9		(500) ^(7,m)			(500) ^(7,m)		NA ⁽²⁾	(500) ^(7,m)	120 ^(m)	NA ⁽²⁾	(500) ^(7,m)	120 ^(m)	NA ⁽²⁾
C ₁₀ -C ₁₄ (mg/kg dry wt)	87	<20	<20	<20	<20	< 20	<20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	$(510)^{(7,x)}$	(470) ^(7,x)	(570) ^(7,x)	(670) ^(7,x)	$(560)^{(7,x)}$	$(2900)^{(7,x)}$	$(1700)^{(7,x)}$	$(1500)^{(7,x)}$	$(1900)^{(7,x)}$	$(2200)^{(7,x)}$	$(1900)^{(7,x)}$	(9700) ⁽⁷
C_{15} - C_{36} (mg/kg dry wt)	360	<40	210	<40	<40	< 40	107	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
Total hydrocarbons (C ₇ - C ₃₆)(mg/kg dry wt)	450	< 70	210	<70	<70	< 70	107	< 70	< 70	< 70	< 70	< 70	< 70	< 70	< 70	< 70	< 70	< 70							'					<u></u>
BTEX in soil headspace GC-MS																									'					<u></u>
enzene(mg/kg dry wt)									< 0.06						< 0.06		< 0.06		1.1 ^(v)	1.9 ^(v)	2.7 ^(v)	1.9 ^(v)	1.9 ^(7,v)	8.8 ^(4,v)	3 ^(m)	3.6 ^(v)	11 ^(v)	3 ^(m)	7.2 ^(v)	$(41)^{(4,v)}$
oluene(mg/kg dry wt)									< 0.06						< 0.06		< 0.06		(82) ^(4,v)	(68) ^(4,v)	$(320)^{(4,v)}$	$(170)^{(4,v)}$	(94) ^(4,m)	(2,400) ^(4,v)	(94) ^(4,m)	(270) ^(4,v)	$(1000)^{(4,v)}$	(94) ^(4,m)	$(480)^{(4,m)}$	(7,900)
hylbenzene(mg/kg dry wt)									< 0.06						< 0.06		< 0.06		(59) ^(4,v)	(53) ^(4,v)	$(160)^{(4,v)}$	(92) ^(4,7,v)	$(300)^{(4,v)}$	NA (2)	(180) ^(4,v)	$(200)^{(4,v)}$	(540) ^(4,v)	(300) ^(4,v)	$(300)^{(4,v)}$	NA (2)
&p-Xylene(mg/kg dry wt)									< 0.12						< 0.12		< 0.12		(59) ^(4,x)	(48) ^(4,v)	$(250)^{(4,v)}$	(130) ^(4,v)	$(420)^{(4,v)}$	(1,800) ^(4,v)	$(150)^{(4,m)}$	$(200)^{(4,m)}$	810 ^(4,v)	(150) ^(4,m)	$(420)^{(4,v)}$	(6000) ⁽⁴
-Xylene(mg/kg dry wt)									< 0.06						< 0.06		< 0.06								-					

AECOM Location ID	ETP14	ETP15	ETP16	ETP17	ETP18	ETP19	ETP20	ETP21	E	P22	ETP23	ETP23	ET	P24	ET	P25	ET	TP26											
AECOM Field ID	ETP14 0.2-0.3	ETP15 1.5-1.6	ETP16 0.2	ETP17 2.2	ETP18_0.8-0.9	ETP19 1.8-1.9	ETP20_0.7-0.8	ETP21 0.1-0.2	ETP22 0.6-0.7	ETP22 2.6-2.7	ETP23 0.8-0.9	ETP23 1.2	ETP24 0.7-0.8	ETP24 2.0-2.1	ETP25 0.1-0.2	ETP25 1.8-1.9	ETP26 0.2-0.3	ETP26 0.8-0.9	M		2011) 77: 1				1000 5 :1 1				1
Laboratory Sample Reference	1491304.5	1491304.11	1491304.38	1491304.44	1492225.23	1491304.34	1492225.19	1492225.28	1491304.37	1492225.32	1492225.11	1492225.12	1492225.8	1492225.9	1492225.3	1492225.5	1492225.1	1492225.2	MIE 1999 Gu	delines (Revised	2011): 11er 1	Soil Acce	ptance Criteria	MIE	1999 Guideline	s (Revised 201	11): 11er 1 Soil.	Acceptance Ci	iteria
Date Sampled	20/10/2015	20/10/2015	20/10/2015	20/10/2015	21/10/2015	21/10/2015	21/10/2015	21/10/2015	21/10/2015	21/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015	22/10/2015											ļ
Depth (m bgl)	0.2	1.5	0.2	2.2	0.8	1.8	0.7	0.1	0.6	2.6	0.8	1.2	0.7	2	0.1	1.8	0.2	0.8											ļ
PID Headspace Reading (ppm)	0.0	0.0	0.0	0.0	0.4	1.7	0.4	0.1	0.5	0.0	1.3	1.3	1.6	0.8	1.1	39.2	0.6	0.8	477.0			mnii n					a compa		
Guideline Soil Type 3	Sandy SILT	SILT	Sandy SILT	SILT	Sandy SILT	SILT	Sandy SILT	SILT	Sandy GRAVEL	CLAY	GRAVEL	GRAVEL	GRAVEL	SILT	GRAVEL	SILT	GRAVEL	GRAVEL	All Pathwa	s Soil Acceptant	e Criteria for	IPH - Re	adential Use	1 '	All Pathways So	iii Acceptance	Criteria for TPI	1 - Commerci	ıl .
Observations																			Contamination Sandy silt S	Depth: Surface (-	Contamina Sandy silt	· · · · · ·	rface (<1m)	Contami Sandy silt	nation Depth:	: 1m-4m Clay
Total Petroleum Hydrocarbons (TPH)	+	1									-	-	-						-	-	-	+	-	1					
C ₇ -C ₀ (mg/kg dry wt)	< 8	<10	<8	<10	< 9	< 9	<8	< 8	< 9	< 10	< 8	20	< 8	< 10	< 8	< 10	< 8	< 8	(500) ^(7,m) 1	20 ^(m) (15,000	(500) ^(7,v)	^{7,m)} 120	(m) NA ⁽²⁾	(500) ^(7,m)	120 ^(m)	NA ⁽²⁾	(500) ^(7,m)	120 ^(m)	NA ⁽²⁾
C ₁₀ -C ₁₄ (mg/kg dry wt)	< 20	<20	<20	<20	< 20	< 20	<20	< 20	< 20	< 20	< 20	1,040	< 20	< 20	< 20	156	< 20	< 20	(510) ^(7,x) (4	70) ^(7,x) (570)	(670) ⁽	7.x) (560) ^(7,x) (2900) ⁽⁷	(1700) ^(7,x)	(1500) ^(7,x)	(1900) ^(7,x)	(2200) ^(7,x)	(1900) ^(7,x)	(9700) ^(7,x)
C ₁₅ -C ₃₆ (mg/kg dry wt)	< 40	<40	42	<40	< 40	< 40	<40	970	410	< 40	< 40	67,000	210	< 40	< 40	310	570	240	NA ⁽²⁾	iA ⁽²⁾ NA ⁽) NA ⁽²	2) NA	(2) NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾	NA ⁽²⁾
Total hydrocarbons (C ₇ - C ₃₆)(mg/kg dry wt)	< 70	<70	<70	<70	< 70	< 70	<70	970	410	< 70	< 70	68,000	210	< 70	< 70	470	570	240											
BTEX in soil headspace GC-MS																													
Benzene(mg/kg dry wt)		< 0.06								l			i			l			1.1 ^(v)	.9 ^(v) 2.7 ^(v)	1.9(1	1.9	7,v) 8.8 ^(4,v)	3 ^(m)	3.6 ^(v)	11 ^(v)	3 ^(m)	7.2 ^(v)	$(41)^{(4,v)}$
Toluene(mg/kg dry wt)		< 0.06																	(82) ^(4,y) (6	8) ^(4,v) (320) ⁽⁴⁾	(170) ⁶	4,v) (94)	(2,400) ⁽⁴	(94) ^(4,m)	$(270)^{(4,v)}$	(1000) ^(4,v)	(94) ^(4,m)	(480) ^(4,m)	$(7,900)^{(4,v)}$
Ethylbenzene(mg/kg dry wt)		< 0.06																	(59) ^(4,y) (5	3) ^(4,v) (160) ⁽⁴⁾	(92) ^{(4,7}	^{7,v)} (300) ^(4,v) NA ⁽²⁾	(180) ^(4,v)	(200) ^(4,v)	(540) ^(4,v)	(300) ^(4,v)	$(300)^{(4,v)}$	NA (2)
m&p-Xylene(mg/kg dry wt)		< 0.12														1			(59) ^(4,y) (4	8) ^(4,v) (250) ⁽⁴⁾	(130) ⁶	4,v) (420	(1,800) ⁽⁴	v) (150) ^(4,m)	(200) ^(4,m)	810 ^(4,v)	(150) ^(4,m)	$(420)^{(4,v)}$	(6000) ^(4,v)
o-Xylene(mg/kg dry wt)		< 0.06																											

URS Location ID	ETP17	MfE 1999	MfE 1999	National	National
URS Field ID	ETP17 0.2	Guidelines (Revised 2011):	Guidelines (Revised 2011):	Environmental Standard for	Environmental Standard for
Laboratory Sample Reference	1491304.42	Tier 1 Soil	Tier 1 Soil	Contaminated	Contaminated
Date Sampled	20/10/2015	Acceptance	Acceptance	Land (2012) 1	Land (2012) 1
Depth (m bgl)	0.2	Criteria ¹	Criteria ¹		
PID Headspace Reading (ppm)	-			1	
Guideline Soil Type ³	SAND	All Pathways Soil Acceptance Criteria for TPH - Residential Use	All Pathways Soil Acceptance Criteria for TPH - Commercial Use		
Observations		Contamination Depth: Surface (<1m)	Contamination Depth: Surface (<1m)	Recreational Landuse	Commercial Landuse
DI C.		Sanu	Sanu		
Polycyclic Aromatic Hydrocarbons Screening in Soil			-		
Acenaphthene(mg/kg dry wt)	< 0.03			l	
Acenaphthylene(mg/kg dry wt)	0.24				
Anthracene(mg/kg dry wt)	0.34				
Benzo[a]anthracene(mg/kg dry wt)	3.9				
Benzo[a]pyrene (BAP)(mg/kg dry wt)	6			40	35
BAP(mg/kg dry wt)	8.86 7.2			40	33
Benzo[b]fluoranthene + Benzo[j]fluoranthene(mg/kg dry wt) Benzo[g,h,i]perylene(mg/kg dry wt)	4.5				
Benzo[k]fluoranthene(mg/kg dry wt)	2.7				
Chrysene(mg/kg dry wt)	3.9				
Dibenzo[a,h]anthracene(mg/kg dry wt)	0.9				
Fluoranthene(mg/kg dry wt)	7.2				
Fluorene(mg/kg dry wt)	0.05				
Indeno(1,2,3-c,d)pyrene(mg/kg dry wt)	4.7				
Naphthalene(mg/kg dry wt)	0.14	58 ^(v)	190 ^(4,v)		
Phenanthrene(mg/kg dry wt)	1.91				
Pyrene(mg/kg dry wt)	6.7	1600 ^(4,p)	NA ⁽²⁾		

All concentrations in mg/kg dry weight.

¹ Ministry for the Environment, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) (MIE 1999 Guidelines).

² NA indicates estimated criterion exceeds 20,000 mg/kg. Az 20,000 mg/kg residual separate phase is expected to have formed in soil matrix. Some aesthetic impact may be noted.

³ Values taken from Table 4.10, 4.11, 4.13, 4.14 of the MIE 1999 Guidelines (Revised 2011). The residential guidelines were used in lieu of recreational numbers.

⁸ Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons.

m - Maintenance/Excavation.

/ 11 () / / / / / / / / / / / / / / / / / /	1				,						1	•	
AECOM Location ID	ETP04	ETP10	ETP11	ETP12	ETP13	ETP14	ETP15	ETP16	ETP17	ETP18	ETP24		
AECOM Field ID	ETP04 0.7-0.8	ETP10 0.2-0.3	ETP11 0.2-0.3	ETP12 0.1-0.2	ETP13 0.8-0.9	ETP14 0.2-0.3	ETP15 0.7-0.8	ETP16 0.2	ETP17 0.2	ETP18 0.8-0.9	ETP24 2.0-2.1	National Environmental Standard for	National Environmental Standard
Laboratory Sample Reference	1490864.11	1491304.24	1491304.21	1491304.13	1491304.29	1491304.5	1491304.1	1491304.38	1491304.42	1492225.23	1492225.9	Contaminated Land (2012) ¹	for Contaminated Land (2012)
Date Sampled	19/10/2015	20/10/2015	20/10/2015	20/10/2015	21/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015	21/10/2015	22/10/2015	1	
Depth (m bgl)	0.7	0.2	0.2	0.1	0.8	0.2	0.7	0.2	0.2	0.8	2	1	
PID Headspace Reading (ppm)	0.8	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.4	0.8	1	
Guideline Soil Type ³	SILT	Sandy SILT	Sandy SILT	Sandy SILT	SILT	Sandy SILT	Sandy SILT	Sandy SILT	Silty SAND	SILT	SILT		
Observations	Faint hydrocarbon odour											Recreational Landuse ²	Commercial Landuse ²
Pentachlorophenol Screening in Soil by LCMSMS													
Pentachlorophenol (PCP) (mg/kg dry wt)	< 0.05				< 0.05					< 0.05	< 0.05	150	360
2,3,4,6-Tetrachlorophenol (TCP) (mg/kg dry wt)	< 0.05				< 0.05					< 0.05	< 0.05		
Organochlorine Pesticides Trace in Soil													
Aldrin(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
alpha-BHC(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
beta-BHC(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
delta-BHC(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
gamma-BHC (Lindane)(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
cis-Chlordane(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
trans-Chlordane(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
2,4'-DDD(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	0.005				
4,4'-DDD(mg/kg dry wt)		0.0011	< 0.0010	< 0.0010		< 0.0010	< 0.0010	0.0024	0.011				
2,4'-DDE(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	0.011				
4,4'-DDE(mg/kg dry wt)		0.0035	0.0096	< 0.0010		< 0.0010	< 0.0010	0.131	1.52				
2,4'-DDT(mg/kg dry wt)		< 0.0010	0.0012	< 0.0010		< 0.0010	< 0.0010	0.0089	0.159				
4,4'-DDT(mg/kg dry wt)		0.0071	0.0063	0.0021		< 0.0010	< 0.0010	0.093	0.59				
Total DDT Isomers(mg/kg dry wt)		0.012	0.017	< 0.006		< 0.006	< 0.006	0.24	2.3			400	1000
Dieldrin(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.002			70	160
Endosulfan I(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Endosulfan II(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Endosulfan sulphate(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Endrin(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Endrin aldehyde(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Endrin ketone(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Heptachlor(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Heptachlor epoxide(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Hexachlorobenzene(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Methoxychlor(mg/kg dry wt)		< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Total Chlordane [(cis+trans)*100/42](mg/kg dry wt)		< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002				

All concentrations in mg/kg dry weight.

Bold - exceeds the National Environmental Standard for Contaminated Land (2011) Recreational Guideline

 $^{^{1}}$ National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health 2011.

² Values taken from Table B2 in Appendix B 'Soil contaminant standards for health for inorganic substances (Recreational and Commerical).'

A=COM									
AECOM Location ID	ETP10	ETP11	ETP12	ETP14	ETP15	ETP16	ETP17		
AECOM Field ID	ETP10 0.2-0.3	ETP11 0.2-0.3	ETP12 0.1-0.2	ETP14 0.2-0.3	ETP15 0.7-0.8	ETP16 0.2	ETP17 0.2	USEPA	USEPA
Laboratory Sample Reference	1491304.24 20/10/2015	1491304.21	1491304.13 20/10/2015	1491304.5	1491304.1 20/10/2015	1491304.38	1491304.42 20/10/2015		
Date Sampled Depth (m bgl)	0.2	20/10/2015 0.2	0.1	20/10/2015 0.2	0.7	20/10/2015 0.2	0.2		
PID Headspace Reading (ppm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Guideline Soil Type ³	Sandy SILT	Sandy SILT	Sandy SILT	Sandy SILT	Sandy SILT	Sandy SILT	Silty SAND	Residential Soil (mg/kg)	Industrial Soil (mg/kg)
Observations									
Organonitro&phosphorus Pesticides Trace in MR Soil by GCMS Acetochlor(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Alachlor(mg/kg dry wt)	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006		
Atrazine(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Atrazine-desethyl(mg/kg dry wt)	< 0.008 < 0.015	< 0.008 < 0.015	< 0.007 < 0.014	< 0.008 < 0.015	< 0.008 < 0.016	< 0.007 < 0.014	< 0.007 < 0.014		
Atrazine-desisopropyl(mg/kg dry wt) Azaconazole(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.014	< 0.004		
Azinphos-methyl(mg/kg dry wt)	< 0.015	< 0.015	< 0.014	< 0.015	< 0.016	< 0.014	< 0.014		
Benalaxyl(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		
Bitertanol(mg/kg dry wt)	< 0.015 < 0.008	< 0.015 < 0.008	< 0.014 < 0.007	< 0.015 < 0.008	< 0.016 < 0.008	< 0.014 < 0.007	< 0.014 < 0.007		<u> </u>
Bromacil(mg/kg dry wt) Bromopropylate(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Butachlor(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Captan(mg/kg dry wt)	< 0.015	< 0.015	< 0.014	< 0.015	< 0.016	< 0.014	< 0.014		
Carbaryl(mg/kg dry wt) Carbofuran(mg/kg dry wt)	< 0.008	< 0.008	< 0.007 < 0.007	< 0.008	< 0.008	< 0.007 < 0.007	< 0.007 < 0.007		
Chlorfluazuron(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		†
Chlorothalonil(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Chlorpyrifos(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Chlorpyrifos-methyl(mg/kg dry wt) Chlortoluron(mg/kg dry wt)	< 0.008 < 0.015	< 0.008 < 0.015	< 0.007 < 0.014	< 0.008 < 0.015	< 0.008 < 0.016	< 0.007 < 0.014	< 0.007 < 0.014	<u> </u>	1
Cnorroturon(mg/kg dry wt) Cyanazine(mg/kg dry wt)	< 0.013	< 0.013	< 0.014	< 0.008	< 0.008	< 0.014	< 0.014		
Cyfluthrin(mg/kg dry wt)	< 0.009	< 0.010	< 0.009	< 0.009	< 0.010	< 0.009	< 0.009		
Cyhalothrin(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		<u> </u>
Cypermethrin(mg/kg dry wt) Deltamethrin (including Tralomethrin)(mg/kg dry wt)	< 0.018 < 0.008	< 0.019 < 0.008	< 0.017 < 0.007	< 0.018	< 0.019 < 0.008	< 0.017 < 0.007	< 0.017 < 0.007		1
Diazinon(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Dichlofluanid(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Dichloran(mg/kg dry wt)	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		
Dichlorvos(mg/kg dry wt) Difenoconazole(mg/kg dry wt)	< 0.010 < 0.010	< 0.010 < 0.011	< 0.010 < 0.010	< 0.010 < 0.011	< 0.010 < 0.011	< 0.010 < 0.010	< 0.010 < 0.010		
Dimethoate(mg/kg dry wt)	< 0.015	< 0.011	< 0.014	< 0.011	< 0.011	< 0.014	< 0.014		
Diphenylamine(mg/kg dry wt)	< 0.015	< 0.015	< 0.014	< 0.015	< 0.016	< 0.014	< 0.014		
Diuron(mg/kg dry wt)	0.021	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	0.01	130	1600
Fenpropimorph(mg/kg dry wt) Fluazifop-butyl(mg/kg dry wt)	< 0.008	< 0.008	< 0.007 < 0.007	< 0.008 < 0.008	< 0.008 < 0.008	< 0.007 < 0.007	< 0.007 < 0.007		
Fluometuron(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Flusilazole(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Fluvalinate(mg/kg dry wt)	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006		
Furalaxyl(mg/kg dry wt) Haloxyfop-methyl(mg/kg dry wt)	< 0.004 < 0.008	< 0.004 < 0.008	< 0.004 < 0.007	< 0.004 < 0.008	< 0.004 < 0.008	< 0.004 < 0.007	< 0.004 < 0.007		
Hexaconazole(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Hexazinone(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		
IPBC (3-Iodo-2-propynyl-n-butylcarbamate)(mg/kg dry wt)	< 0.04 < 0.004	< 0.04 < 0.004	< 0.04 < 0.004	< 0.04 < 0.004	< 0.04 < 0.004	< 0.04 < 0.004	< 0.04 < 0.004		
Kresoxim-methyl(mg/kg dry wt) Linuron(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.008	< 0.004	< 0.004		
Malathion(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Metalaxyl(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Methamidophos(mg/kg dry wt) Metolachlor(mg/kg dry wt)	< 0.04 < 0.006	< 0.04 < 0.006	< 0.04 < 0.006	< 0.04 < 0.006	< 0.04 < 0.006	< 0.04 < 0.006	< 0.04 < 0.006		
Metribuzin(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Molinate(mg/kg dry wt)	< 0.015	< 0.015	< 0.014	< 0.015	< 0.016	< 0.014	< 0.014		
Myclobutanil(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Naled(mg/kg dry wt) Norflurazon(mg/kg dry wt)	< 0.04 < 0.015	< 0.04 < 0.015	< 0.04 < 0.014	< 0.04 < 0.015	< 0.04 < 0.016	< 0.04 < 0.014	< 0.04 < 0.014		
Oxadiazon(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Oxyfluorfen(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		
Paclobutrazol(mg/kg dry wt) Parathion-ethyl(mg/kg dry wt)	< 0.008	< 0.008	< 0.007 < 0.007	< 0.008	< 0.008	< 0.007 < 0.007	< 0.007 < 0.007		-
Paratnion-emyl(mg/kg dry wt) Parathion-methyl(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		<u>L</u>
Pendimethalin(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Permethrin(mg/kg dry wt)	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003		!
Pirimicarb(mg/kg dry wt) Pirimiphos-methyl(mg/kg dry wt)	< 0.008	< 0.008	< 0.007 < 0.007	< 0.008	< 0.008 < 0.008	< 0.007 < 0.007	< 0.007 < 0.007		1
Prochloraz(mg/kg dry wt)	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
Procymidone(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Prometryn(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		1
Propachlor(mg/kg dry wt) Propanil(mg/kg dry wt)	< 0.008 < 0.03	< 0.008 < 0.03	< 0.007 < 0.03	< 0.008 < 0.03	< 0.008 < 0.03	< 0.007 < 0.03	< 0.007 < 0.03		1
Propazine(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		
Propiconazole(mg/kg dry wt)	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006		
Pyriproxyfen(mg/kg dry wt) Quizalofop-ethyl(mg/kg dry wt)	< 0.008	< 0.008	< 0.007 < 0.007	< 0.008	< 0.008	< 0.007 < 0.007	< 0.007 < 0.007		
Quizaiorop-etnyi(mg/kg dry wt) Simazine(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Simetryn(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Sulfentrazone(mg/kg dry wt) TCMTP 12 (this grap a methylthic) benyethiogale Pusen1(mg/kg dry wt)	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		!
TCMTB [2-(thiocyanomethylthio)benzothiazole,Busan](mg/kg dry wt) Tebuconazole(mg/kg dry wt)	< 0.015 < 0.008	< 0.015 < 0.008	< 0.014 < 0.007	< 0.015 < 0.008	< 0.016 < 0.008	< 0.014 < 0.007	< 0.014 < 0.007		1
Terbacil(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Terbufos(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Terbuneton(mg/kg dry wt) Terbunyazine(mg/kg dry wt)	< 0.008	< 0.008 < 0.004	< 0.007 < 0.004	< 0.008 < 0.004	< 0.008 < 0.004	< 0.007 < 0.004	< 0.007 < 0.004		1
Terbuthylazine(mg/kg dry wt) Terbuthylazine-desethyl(mg/kg dry wt)	< 0.004 < 0.008	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		1
Terbutryn(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Thiabendazole(mg/kg dry wt)	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<u> </u>	<u> </u>
Thiobencarb(mg/kg dry wt) Tolylfluanid(mg/kg dry wt)	< 0.008 < 0.004	< 0.008 < 0.004	< 0.007 < 0.004	< 0.008 < 0.004	< 0.008 < 0.004	< 0.007 < 0.004	< 0.007 < 0.004		1
Tolylfluanid(mg/kg dry wt) Triazophos(mg/kg dry wt)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004		
Trifluralin(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		
Vinclozolin(mg/kg dry wt)	< 0.008	< 0.008	< 0.007	< 0.008	< 0.008	< 0.007	< 0.007		

Naval Point Detailed Site Investigation

TABLE 11: Analytical Results - Asbestos in Soil Results

	Total % friable Asbestos in Soil	Total % Asbestos in Soil
Western Australian Department of Health (WA DoH) (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia		
All Site uses	0.001%	
Parks, public open spaces, playing fields		0.02%

				Sample W	eights (kg)				> 7mm ACM				Asbestos Fines	/ Friable Asbestos				
Sample ID	Client Sample Number	Total Sample (kg)	Total 500ml Sub	>7mm Fraction (g)	2-7mm Fraction	<2mm Sub Sample	<2mm Excess	>7mm ACM (g)	% Asbestos in ACM	% Asbestos in Soil (>7mm)	2-7 mm ACM (g)	% Asbestos in ACM	% Asbestos in Soil (2-7mm)	<2mm ACM (g)	% Asbestos in ACM	% Asbestos in Soil (<2mm)	Total % friable Asbestos in Soil	Total % Asbestos in Soil
BS032994	ETP04_0.4-0.6_SV		402.72		214.68	101.39	86.65				No asbestos detected	i		No asbestos detected				0.0000%
BS032995	ETP07_0.3-0.5_SV		439.12		240.63	101.47	97.02				0.0001	100	0.0000%	0%	100%	0.00099%	0.001%	0.0010%
BS032996	ETP09_0.1-0.3_SV		513.31		271.65	102.66	139.00				0.001	100	0.0000%	No asbestos detected		0.00000%	0.000%	0.0000%
BS032997	ETP13_0.2-0.4_SV		503.04		313.22	100.60	89.22				No asbestos detected	i	-	No asbestos detected		0.00000%		0.0000%
BS032998	ETP18_0.1-0.3_SV		458.49		259.58	100.53	98.38				No asbestos detected	i	-	No asbestos detected		0.00000%		0.0000%
BS032999	ETP19_0.2-0.3_SV		515.03		261.81	101.43	151.79				No asbestos detected	i	-	No asbestos detected		0.00000%	-	0.0000%
BS033000	ETP22_0.2-0.4_SV		626.40		277.18	103.09	246.13				0.001	100	0.00004%	0.001	100%	0.00097%	0.001%	0.0010%
BS033001	ETP22_0.6-0.8_SV	10.0	426.23	430.62	191.31	100.25	134.67	430.62	0.15	0.0150%	0.211	15	0.0017%	0.001	100%	0.00100%	0.0027%	0.0177%
BS033002	ETP23_0.2-0.4_SV		489.51		239.42	100.77	149.32				0.001	100	0.00004%	No asbestos detected		0.00000%	0.000%	0.0000%
BS033003	ETP22_0.5_BLK			119.61				No asbestos detected								0.00000%	0.000%	0.0000%

italics Weights on lab sheet incorrect as fractions do not sum to whole.

ND = not detected

Highlighted cells = less than detection limit. Conservatively assumed to be 0.001g

bold: result exceeds Western Australian Guidelines acceptance criteria for total % asbestos in soil
Shaded grey result exceeds Western Australian Guidelines acceptance criteria for parks, public open spaces, and playing fields.

Appendix F

Hill Laboratory Result Tables for Soils

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 3

SPv1

Client: AECOM New Zealand Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

Lab No: Date Registered: Date Reported:

Quote No:

Order No: Client Reference:

Submitted By:

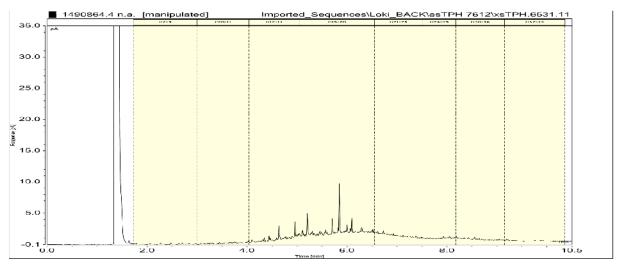
04-Nov-2015

21-Oct-2015

1490864

60444747 60444747 S McDonald

Sample Type: Soil						
,	Sample Name:	ETP01_1.5-1.6 19-Oct-2015 10:35 am	ETP02_0.2-0.3 19-Oct-2015 11:10 am	ETP04_0.7-0.8 19-Oct-2015 1:15 pm	ETP04_1.6-1.7 19-Oct-2015 1:40 pm	ETP06_0.9-1 19-Oct-2015 2:35 pm
	Lab Number:	1490864.4	1490864.6	1490864.11	1490864.12	1490864.14
Individual Tests				ı		
Dry Matter	g/100g as rcvd	92	78	77	70	73
Heavy metals, screen As,Cd,C	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	11	8	8	9	10
Total Recoverable Cadmium	mg/kg dry wt	0.82	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	22	24	24	27	24
Total Recoverable Copper	mg/kg dry wt	57	13	11	11	11
Total Recoverable Lead	mg/kg dry wt	590	29	26	27	25
Total Recoverable Mercury	mg/kg dry wt	0.56	0.34	0.21	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	18	19	19	21	18
Total Recoverable Zinc	mg/kg dry wt	320	87	84	91	81
BTEX in Soil by Headspace G	C-MS			1		
Benzene	mg/kg dry wt	-	-	-	-	< 0.06
Toluene	mg/kg dry wt	-	-	-	-	< 0.06
Ethylbenzene	mg/kg dry wt	-	-	-	-	< 0.06
m&p-Xylene	mg/kg dry wt	-	-	-	-	< 0.12
o-Xylene	mg/kg dry wt	-	-	-	-	< 0.06
Pentachlorophenol Screening	in Soil by LCMSMS	3				
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	< 0.05	-	-
2,3,4,6-Tetrachlorophenol (TC		-	-	< 0.05	-	-
Total Petroleum Hydrocarbons						
C7 - C9	mg/kg dry wt	< 8	< 9	< 9	< 10	< 9
C10 - C14	mg/kg dry wt	87	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	360	< 40	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	450	< 70	< 70	< 70	< 70
,	Sample Name:	ETP07_0.1-0.2 19-Oct-2015 3:20 pm	pm			
	Lab Number:	1490864.16	1490864.18			
Individual Tests		_	_	T		
Dry Matter	g/100g as rcvd	88	72	-	-	-
Heavy metals, screen As,Cd,C	· · · · · · ·					
Total Recoverable Arsenic	mg/kg dry wt	< 2	9	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	-	-	-
Total Recoverable Chromium	mg/kg dry wt	9	25	-	-	-
Total Recoverable Copper	mg/kg dry wt	46	10	-	-	-
Total Recoverable Lead	mg/kg dry wt	16.3	25	-	-	-


Sample Type: Soil						
	Sample Name:	ETP07_0.1-0.2 19-Oct-2015 3:20	ETP07_1.2-1.3 19-Oct-2015 4:00			
		pm	pm			
	Lab Number:	1490864.16	1490864.18			
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	-	-	-
Total Recoverable Nickel	mg/kg dry wt	29	19	-	-	-
Total Recoverable Zinc	mg/kg dry wt	69	85	-	-	-
Tributyl Tin Trace in Soil sam	ples by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	0.016	-	-	-	-
Monobutyltin (as Sn)	mg/kg dry wt	0.056	-	-	-	-
Tributyltin (as Sn)	mg/kg dry wt	0.013	-	-	-	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	-	-	-	-
Total Petroleum Hydrocarbon	s in Soil					
C7 - C9	mg/kg dry wt	< 8	< 9	-	-	-
C10 - C14	mg/kg dry wt	< 20	< 20	-	-	-
C15 - C36	mg/kg dry wt	< 40	< 40	-	-	-
Total hydrocarbons (C7 - C36	6) mg/kg dry wt	< 70	< 70	-	-	-

1490864.4 ETP01_1.5-1.6 19-Oct-2015 10:35 am Client Chromatogram for TPH by FID

5.0

-0.1<u>0.0</u>

2.0

1.0

8.0

Analyst's Comments

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	4, 6, 11-12, 14, 16, 18
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	4, 6, 11-12, 14, 16, 18
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	14
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction with sonication, dilution, analysis by LCMSMS with online SPE. Tested on dried sample	0.010 mg/kg dry wt	11
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	16
Total Petroleum Hydrocarbons in Soil*	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	4, 6, 11-12, 14, 16, 18
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	4, 6, 11-12, 14, 16, 18
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	4, 6, 11-12, 14, 16, 18

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Received by: Natalia Leatua

Hill Laboratories
BETTER TESTING BETTER RESULTS

R J Hill Laboratories Lin 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand | web www.niii-iaos.co.nz

hitometron Summerey

Page I of I

Client: AECOM New Zealand Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

€HRISTCHURCH 8051

Analysis as noted below. Thanks, factorel.

Lab No:

1490864

Date Registered:

21-Oct-2015 10:06 am

Priority: Quote No:

Normal

Order No:

60444747

Client Reference: 60444747 Add. Client Ref:

Submitted By:

S McDonald

Charge To: Target Date: AECOM New Zealand Limited

23-Oct-2015 4:30 pm

Controller

No	Sample Mance			
1		Sample (Mgs)	Consumate	Tests Reguestait
	ETP01_0.2-0.3 19-Oct-2015 9:45 am	Soil	cGSoil, cGSoil	Hold Cold
2	ETP01_0.6-0.7 19-Oct-2015 9:55 am	Soil	cGSoil, cGSoil	Hold Cold
3	ETP01_1.2-1.3 19-Oct-2015 10:20 am	Soil	cGSoil, cGSoil	Hold Cold
4	ETP01_1.5-1.6 19-Oct-2015 10:35 am	Soll	GSoll300	Hold Cold TPH, HM+Hg (Screens)
5	ETP01_2.1-2.2 19-Oct-2015 10:45 am	Soil	GSoil300	Hold Cold
3	ETP02_0.2-0.3 19-Oct-2015 11:10 am	Soil	GSoil300, GSoil30	(Holgeold TPH, HM+lfg (Screen)
7	ETP02_1-1.1 19-Oct-2015 11:25 am	Soil	GSoil300, GSoil300	
3	ETP02_1.7-1.8 19-Oct-2015 11:45 am	Soil	cGSoil, cGSoil	Hold Cold
)	ETP02_2.8-2.9 19-Oct-2015 12:00 pm	Soil	cGSoil, cGSoil	Hold Cold
0	ETP04_0.1-0.2 19-Oct-2015 1:00 pm	Soll	cGSall, GSall300	Hold Cold
1	ETP04_0.7-0.8 19-Oct-2015 1:15 pm	Soil	cGSoil, cGSoil	Hold Cold - PH. HM+ (+a (Screen) + PC PCNOC
2	ETP04_1.6-1.7 19-Oct-2015 1:40 pm	Soil	GSoil300, cGSoil	Hold Gold TPH, HM+ Hg (Screen) + PCP (Mac Hold Gold TPH, HM+Hg (Screen)
3	ETP06_0.2-0.3 19-Oct-2015 2:20 pm	Soil	cGSoil, cGSoil	Hold Cold
1 🌷	ETP06_0.9-1 19-Oct-2015 2:35 pm	Soil	cGSoil, cGSoil	HOLD COLD TOLL HIM + HO (SCYONS) PTEV
Š	ETP06_2.1-2.2 19-Oct-2015 2:45 pm	Soil		Hold Cold TPH, HM+Hg (Screen), BTEX
	ETP07_0.1-0.2 19-Oct-2015 3:20 pm	Soil	cGSoil, cGSoil	Hold Cold TPH, HM + Hg (Screen), TOT (Trace
	ETP07_0.5-0.6 19-Oct-2015 3:45 pm	Soil	cGSoil, cGSoll	Hold Cold
	ETP07_1.2-1.3 19-Oct-2015 4:00 /	Soil	cGSoil, cGSoil	Hold cold TPH, HW+Hg (SCreen)

Please see 2x Questions re sample labels. (7 x 1491304.12 1 x 1491304.33)

Lab No: 1490864

Hill Laboratories

Page 1 of 1

AECOM

Form:

Chain of Cu	ustody & Ar	nalysis F	Request	t Fo	rm																					
AECOM - Christchurch												Lab	orato	-					Tel:			8 200				
PO Box 710						03 966 6	3119					Lab.	Name:	R	J Hill L	.abora	tories	Ltd	Fax	: (07 85	8 200)1	•		
Christchurch 8140				F	ax: 03	966 600)1					Lab.	Addres	s: 1	Clyde	St, Ha	milton	1	Pre	limina	ary R	eport	by:			
				E	Email:	<u>hannah</u>	n.wrigh	nt@ae	com.c	:om		Cont	act Na	ne: Je	an Co	nnick			Fina	al Re	port b	y:				
					-						•	Lab.	Ref:						Lab	Quo	te No):				
Project Name:				Projec	ct Nu	mber:		604447	'47			Pur	chase	Ord	er N	umb	er:									
Sample collected	by:	Scott McDonald		Samp	le Re	sults to	be r	eturne	ed to:		Hannah Wrigh	t of A	ECOM	Consu	ting S	Servi	es									
Specifications:									(Tick)					1 1	_	1	Т	Ana	alysis	Red	ques	st T	l Re	marks &	comm	ents
1. Urgent TAT required? (pi	lease circle: 24hr 48h	rdays)	-			П _У			N.		□ N/A															
Fast TAT Guarantee Rec	***************************************	uays)				Yes Yes			No No		N/A		Σ												*******	
3. Is any sediment layer pre	esent in waters to be exclude	ed from extractions?				Yes Yes			No		N/A		Mercury						l							
4. Special storage requirem	nents?					Yes			No		□ N/A		ž	12 3			اي					1	<u></u>			
5. Preservation requiremen	ts?					Yes			No		N/A		<u>+</u>	Industry)			빙	띵								
6. Other requirements?			✓ Email			Yes			No		N/A	ا ت	eta C	힐힐	18	S	\$	₹					<u> </u>			
7. Report Format: Err	nail: hannah.wright@aecom.	com	8. Project Mana	ger: H Wr	right					tel:	03 966 6119	Sold	ŽΉ	 		R.		E	1	1 1		1	<u> </u>			
Lab.	Sample ID	Sampling Date &	Sampling Date		Matrix			Prese	rvation		Container	PloH	8 ₹	TPH (oil I	نوا ز	<u>`</u>	ğ	OCPs (TRACE)				-				
ID	Sample 15	time (on)	& Time (off)	soil	water	other	filt'ed	acid	ice	other	(No. & type)	외	Heavy Metals (SCREEN)	타	PCP (TRACE)	TBT (TRACE	Ó	8				_	_	·		
67804-0.7	_0.8	19 10.10	<u></u>									4			\perp	<u> </u>		_	_		_	_				
ETPO4 -1.6	-1.7	(1)																_	_		_					
ETPOB-0	2-0.3	- fr													_											
ETPOB_O	9_1	11														_			_			\bot				
ETPO6-2.	i-2.2	11													_	_		_								
FTPO7 - O.	1_0.2	11			,										_					1-1			_			
E7007_0.	5-06	11												$\bot \bot$	_	<u> </u>		_					_			
FTP07-1.	2-1.3	11																_		Ш		_				
												Ш		$\bot \bot$	_			_	_	1	_	_				
																<u>L</u>										Carles and a
Relinquished By:			Received	by:									eived in lition?	good	Ye	s/No/N	NA	Metho	od of S	hipme	_ 1	ourier		Postal [D.	
Name:		Date:	Name: EL	mih		A.					Date:	Sam	ples rec ed?	eived	Ye	s/No/N		Consi No.	gnmen	t Not	•		-L			
of:		Time: .	of:	11 -	1,	65	(h	ch			Time:				Ye	s/No/N	JA	Trans	port Co	0:				-		
			171	1 1	man t							*							_	α	e-		,			

7.90

A=COM

Form: Chain of Custody & Analysis Request Form Laboratory Details Tel: 07 858 2000 PO Box 710 Phone: 03 966 6119

F O BOX 7 10					FHORE	. 03 900	0119					Lab	. Name	:	KJH	IIII Lab	oratori	es Ltd	1 -	ax:	07 8	58 200	1			
Christchurch 8140						3 966 60						Lab. Address: 1 Clyde St, Hamilton Preliminary Report by:														
					Email:	<u>hanna</u>	h.wrigl	ht@ae	com.	<u>com</u>			tact Na	ime:	Jean	Conni	ck			inal Re						
Project Name:				Proid	oct Nu	mber:		60444	747				. Ref:				. 1			ab Qu	ote No	0:				
-												Pu	rchas	e Or	aer	Nur	nper	:								
Sample collected	by:	Scott McDonal	d	Sam	ple Re	sults t	o be r	eturn	ed to:	:	Hannah Wrigh	nt of A	AECON	1 Con	sultin	g Sei	vices									
Specifications:									(Tick)			L		_				Á	nalys	is Re	que	st	T Bo	marks &		monto
1. Urgent TAT required? (p	lease circle: 24hr 48hr	days)			······································	Yes		П	No		N/A	1											Kei	naiks &	COITII	Herits
2. Fast TAT Guarantee Red	quired?					Yes			No		N/A	1	5													
Is any sediment layer pre	esent in waters to be exclude	d from extractions?	?			Yes			No		N/A		Mercury								1 1					
 Special storage requiren 	nents?					Yes			No		□ N/A	1 1	ž +	3	(z)		ا						<u></u>			
5. Preservation requiremen						Yes			No		N/A	4	<u>s</u>	Industry)	gnp	ارين	ᆈᇕ	(TRACE)					<u> </u>			
Other requirements? Report Format: En	Fax H		Email B. Project Mana	anr: H V	N/right	Yes	5		No	tel:	N/A 03 966 6119	Cold	S (E	<u> </u>	ᆵ	Ş۱	$\{ \mathcal{E} $	8								
Lab.	iali. Hatilian.wiight@aecom.t	1	1	ger. II v	Matrix	·	Ī	Press	ervation		Container	ပို	~ H ≥ H	i <u>o</u>	%			s (1								
ID	Sample ID	Sampling Date & time (on)	Sampling Date & Time (off)	soil	water	other	filt'ed	acid	ice	other	(No. & type)	Hold	Heavy Metals 4 (SCREEN)	TPH (oil I	BTEX (oil industry)	PCP (TRACE)	ONOP (TRACE)	OCPs					 			
ETF06 0.2-0.3	, /	19.10.15		/																						
ETF01_0.60.	,	()		/	<u> </u>					<u> </u>		Ľ														
ETPOI_ 1.2-1.	s /	l)		/]					Ľ									Ш					
6.TPOI_ 1.5_[.]		\1		/			<u> </u>														Ш					
E7801_21-2.	2 /	i,																				\bot				
ETP02_ 0.2-6	.3	11												1_												
ETPOZ - 1 -1.	<u> </u>	(1		/										_							Ш				₽ P	
ETP02-1.7-1	3 /	ř.																							Ceiv	
E1802 28-3	٦/	1,																	Ш					3800	ceived by:	
ETPOU_O/_	0.2	Fi												<u> </u>				<u> </u>					<u> </u>	۸	by:	
Relinquished By:			Received	by:									eived in dition?	good	ľ	Yes/N	o/NA	Met	hod of	Shipm	_ 1	ourier_	\Box		Natalia	0
Name:		Date:	Name: En	~h	$\gamma = I$	۸,					Date:	Sam	ples re ed?	ceived		Yes/N	o/NA	Cor No.		ent No	(e)				lia Le	00
of:		Time:	of: 1ti	111	abo	<					Time:				ľ	Yes/N	o/NA	Tra	nsport	Co:					Leatua	0
				```	-X	/																			, 10	

BMS-PM-DV-F046

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 14

SPv2

Client:

AECOM Consulting Services (NZ) Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

Lab No: Date Registered: Date Reported:

Quote No:

Order No: Client Reference:

Submitted By:

1491304 22-Oct-2015 09-Nov-2015

60444747 60444747 S McDonald

Sample Type: Soil						
	Sample Name:	ETP3 0.2-0.3 20-Oct-2015 2:46 pm	ETP3 1.5-1.9 20-Oct-2015 3:00 pm	ETP14 0.2-0.3 20-Oct-2015 1:00 pm	ETP15 0.7-0.8 20-Oct-2015 12:00 pm	ETP15 1.5-1.6 20-Oct-2015 12:10 pm
	Lab Number:	1491304.1	1491304.3	1491304.5	1491304.10	1491304.11
Individual Tests						
Dry Matter	g/100g as rcvd	91	85	79	76	71
Heavy metals, screen As,Cd						J.
Total Recoverable Arsenic	mg/kg dry wt	24	3	8	-	7
Total Recoverable Cadmium	mg/kg dry wt	0.34	< 0.10	< 0.10	-	< 0.10
Total Recoverable Chromium		23	15	23	-	23
Total Recoverable Copper	mg/kg dry wt	198	15	12	-	9
Total Recoverable Lead	mg/kg dry wt	450	18.2	41	-	24
Total Recoverable Mercury	mg/kg dry wt	16.9	< 0.10	< 0.10	-	0.12
Total Recoverable Nickel	mg/kg dry wt	15	19	18	-	17
Total Recoverable Zinc	mg/kg dry wt	380	57	89	-	77
BTEX in Soil by Headspace	- 0 0 7		O1	00		
Benzene	mg/kg dry wt	_	_	_		< 0.06
Toluene	mg/kg dry wt	_	_	_		< 0.06
Ethylbenzene	mg/kg dry wt	_	_	_		< 0.06
m&p-Xylene	mg/kg dry wt	_	_	_		< 0.12
o-Xylene	mg/kg dry wt	_	_	_		< 0.06
Organochlorine Pesticides T						\ 0.00
Aldrin	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
alpha-BHC	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
beta-BHC	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
delta-BHC	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
gamma-BHC (Lindane)	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
cis-Chlordane	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
trans-Chlordane	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
2.4'-DDD	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
4,4'-DDD	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
2,4'-DDE	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
4,4'-DDE	mg/kg dry wt	_	_	< 0.0010	< 0.0010	_
2,4'-DDT	mg/kg dry wt	_	_	< 0.0010	< 0.0010	-
4,4'-DDT	mg/kg dry wt	<u>-</u>	_	< 0.0010	< 0.0010	-
Total DDT Isomers	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Dieldrin	mg/kg dry wt	-	-	< 0.0010	< 0.006	-
Endosulfan I	mg/kg dry wt		-	< 0.0010	< 0.0010	-
Endosulfan II		-	-	< 0.0010	< 0.0010	-
	mg/kg dry wt		-			
Endosulfan sulphate	mg/kg dry wt		-	< 0.0010	< 0.0010	-
Endrin	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-

Sample Type: Soil						
	Sample Name:	ETP3 0.2-0.3 20-Oct-2015 2:46 pm	ETP3 1.5-1.9 20-Oct-2015 3:00 pm	ETP14 0.2-0.3 20-Oct-2015 1:00 pm	ETP15 0.7-0.8 20-Oct-2015 12:00 pm	ETP15 1.5-1.6 20-Oct-2015 12:10 pm
	Lab Number:	1491304.1	1491304.3	1491304.5	1491304.10	1491304.11
Organochlorine Pesticides Ti						
Endrin aldehyde	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Endrin ketone	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Heptachlor	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Heptachlor epoxide	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Hexachlorobenzene	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Methoxychlor	mg/kg dry wt	-	-	< 0.0010	< 0.0010	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	-	-	< 0.002	< 0.002	-
Organonitro&phosphorus Pe	sticides Trace in MF	R Soil by GCMS				
Acetochlor	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Alachlor	mg/kg dry wt	-	-	< 0.006	< 0.006	-
Atrazine	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Atrazine-desethyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Atrazine-desisopropyl	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Azaconazole	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Azinphos-methyl	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Benalaxyl	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Bitertanol	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Bromacil	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Bromopropylate	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Butachlor	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Captan	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Carbaryl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Carbofuran	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Chlorfluazuron	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Chlorothalonil	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Chlorpyrifos	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Chlorpyrifos-methyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Chlortoluron	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Cyanazine	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Cyfluthrin	mg/kg dry wt	-	-	< 0.009	< 0.010	-
Cyhalothrin	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Cypermethrin	mg/kg dry wt	-	-	< 0.018	< 0.019	-
Deltamethrin (including Tralomethrin)	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Diazinon	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Dichlofluanid	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Dichloran	mg/kg dry wt	-	-	< 0.03	< 0.03	-
Dichlorvos	mg/kg dry wt	-	-	< 0.010	< 0.010	-
Difenoconazole	mg/kg dry wt	-	-	< 0.011	< 0.011	-
Dimethoate	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Diphenylamine	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Diuron	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Fenpropimorph	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Fluazifop-butyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Fluometuron	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Flusilazole	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Fluvalinate	mg/kg dry wt	-	-	< 0.006	< 0.006	-
Furalaxyl	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Haloxyfop-methyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Hexaconazole	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Hexazinone	mg/kg dry wt	-	-	< 0.004	< 0.004	-
IPBC (3-lodo-2-propynyl-n-butylcarbamate)	mg/kg dry wt	-	-	< 0.04	< 0.04	-
Kresoxim-methyl	mg/kg dry wt	-	-	< 0.004	< 0.004	-

Sample Type: Soil						
S	ample Name:	ETP3 0.2-0.3	ETP3 1.5-1.9	ETP14 0.2-0.3	ETP15 0.7-0.8	ETP15 1.5-1.6
			20-Oct-2015 3:00		20-Oct-2015	20-Oct-2015
	Lab Nivesbare	pm 1491304.1	pm 1491304.3	pm 1491304.5	12:00 pm 1491304.10	12:10 pm 1491304.11
Organonitro&phosphorus Pestic	Lab Number:		1491304.3	1491304.5	1491304.10	1491304.11
		C 3011 by GCIVIS		0.000	0.000	
Linuron	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Malathion	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Metalaxyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Methamidophos	mg/kg dry wt	-	-	< 0.04	< 0.04	-
Metolachlor	mg/kg dry wt	-	-	< 0.006	< 0.006	-
Metribuzin	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Molinate	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Myclobutanil	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Naled	mg/kg dry wt	-	-	< 0.04	< 0.04	-
Norflurazon	mg/kg dry wt	-	-	< 0.015	< 0.016	-
Oxadiazon	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Oxyfluorfen	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Paclobutrazol	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Parathion-ethyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Parathion-methyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Pendimethalin Remethrin	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Permethrin Diriminarh	mg/kg dry wt	-	-	< 0.003	< 0.003	-
Pirimicarb	mg/kg dry wt	-	-	< 0.008	< 0.008 < 0.008	-
Pirimiphos-methyl	mg/kg dry wt	-	-	< 0.008 < 0.04		-
Prochloraz Procymidone	mg/kg dry wt	- -	-	< 0.04	< 0.04 < 0.008	-
Prometryn	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Propachlor	mg/kg dry wt	-	_	< 0.004	< 0.004	-
Propanil	mg/kg dry wt	-		< 0.03	< 0.03	-
Propazine	mg/kg dry wt	_	_	< 0.004	< 0.004	_
Propiconazole	mg/kg dry wt	-	_	< 0.004	< 0.004	_
Pyriproxyfen	mg/kg dry wt	_	_	< 0.008	< 0.008	_
Quizalofop-ethyl	mg/kg dry wt	_	_	< 0.008	< 0.008	_
Simazine	mg/kg dry wt	_	_	< 0.008	< 0.008	_
Simetryn	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Sulfentrazone	mg/kg dry wt	-	-	< 0.04	< 0.04	-
TCMTB [2-(thiocyanomethylthio	- ,	-	-	< 0.015	< 0.016	-
benzothiazole,Busan]	,,g,g,			, 0.0.0	1 0.0.0	
Tebuconazole	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Terbacil	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Terbufos	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Terbumeton	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Terbuthylazine	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Terbuthylazine-desethyl	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Terbutryn	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Thiabendazole	mg/kg dry wt	-	-	< 0.04	< 0.04	-
Thiobencarb	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Tolylfluanid	mg/kg dry wt	-	-	< 0.004	< 0.004	-
Triazophos	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Trifluralin	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Vinclozolin	mg/kg dry wt	-	-	< 0.008	< 0.008	-
Total Petroleum Hydrocarbons i	in Soil					
C7 - C9	mg/kg dry wt	< 8	< 8	< 8	-	< 10
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	-	< 20
C15 - C36	mg/kg dry wt	210	< 40	< 40	-	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	210	< 70	< 70		< 70
	Sample Name:	ETP12 0.1-0.2	ETP12 1.0-1.1	ETP5 0.7-0.8	ETP5 1.5-1.6	ETP11 0.2-0.3
		20-Oct-2015	20-Oct-2015	20-Oct-2015 1:50		20-Oct-2015 8:00
	Lab Nimeter	10:10 am	11:00 am 1491304.14	pm 1491304.18	pm 1491304.19	am 1491304.21
L	Lab Number:	1491304.13	1431304.14	1431304.10	1431304.13	1431304.21

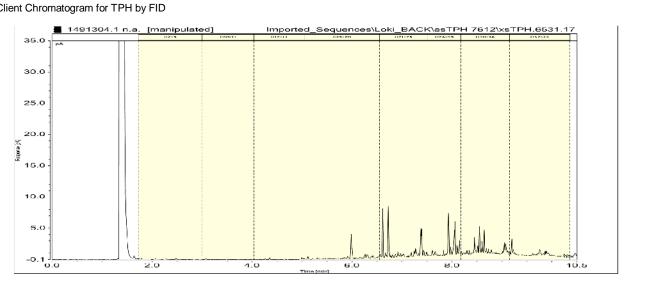
Sample Type: Soil						
	Sample Name:	ETP12 0.1-0.2	ETP12 1.0-1.1	ETP5 0.7-0.8	ETP5 1.5-1.6	ETP11 0.2-0.3
		20-Oct-2015 10:10 am	20-Oct-2015 11:00 am		20-Oct-2015 2:00	
	Lab Number:	1491304.13	1491304.14	pm 1491304.18	pm 1491304.19	am 1491304.21
Individual Tests	Lab Number.	1401004.10	1401004.14	1401004.10	1401004.10	1401004.21
Dry Matter	g/100g as rcvd	83	75	83	73	79
Heavy metals, screen As,Cd,			10	00	7.5	73
Total Recoverable Arsenic			8	4.4	0	8
Total Recoverable Cadmium	mg/kg dry wt mg/kg dry wt	-	< 0.10	14 0.13	8 < 0.10	< 0.10
		-		17		
Total Recoverable Chromium	0 0 1	-	23		25	25
Total Recoverable Copper	mg/kg dry wt	-	9	100	11	14
Total Recoverable Lead	mg/kg dry wt	-	22	156	27	30
Total Recoverable Mercury	mg/kg dry wt	-	0.12	0.19	0.12	0.26
Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt	-	17	16	18	18
	mg/kg dry wt	-	79	179	84	88
BTEX in Soil by Headspace 0						
Benzene	mg/kg dry wt	-	< 0.06	-	-	-
Toluene	mg/kg dry wt	-	< 0.06	-	-	-
Ethylbenzene	mg/kg dry wt	-	< 0.06	-	-	-
m&p-Xylene	mg/kg dry wt	-	< 0.12	-	-	-
o-Xylene	mg/kg dry wt	-	< 0.06	-	-	-
Organochlorine Pesticides Tr	race in Soil					
Aldrin	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
alpha-BHC	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
beta-BHC	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
delta-BHC	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
cis-Chlordane	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
trans-Chlordane	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
2,4'-DDD	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
4,4'-DDD	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
2,4'-DDE	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
4,4'-DDE	mg/kg dry wt	< 0.0010	-	-	-	0.0096
2,4'-DDT	mg/kg dry wt	< 0.0010	-	-	-	0.0012
4,4'-DDT	mg/kg dry wt	0.0021	-	-	-	0.0063
Total DDT Isomers	mg/kg dry wt	< 0.006	-	-	-	0.017
Dieldrin	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Endosulfan I	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Endosulfan II	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Endosulfan sulphate	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Endrin	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Endrin aldehyde	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Endrin ketone	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Heptachlor	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Heptachlor epoxide	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Hexachlorobenzene	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Methoxychlor	mg/kg dry wt	< 0.0010	-	-	-	< 0.0010
Total Chlordane [(cis+trans)*	mg/kg dry wt	< 0.002	-	-	-	< 0.002
100/42] Organonitro&phosphorus Pes						
Acetochlor		< 0.007		_	_	< 0.008
Acetocnior	mg/kg dry wt		-	-		
	mg/kg dry wt	< 0.006	-	-	-	< 0.006
Atrazine	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Atrazine-desethyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Atrazine-desisopropyl	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Aziachazole	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Azinphos-methyl	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Benalaxyl	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Bitertanol	mg/kg dry wt	< 0.014	-	-	-	< 0.015

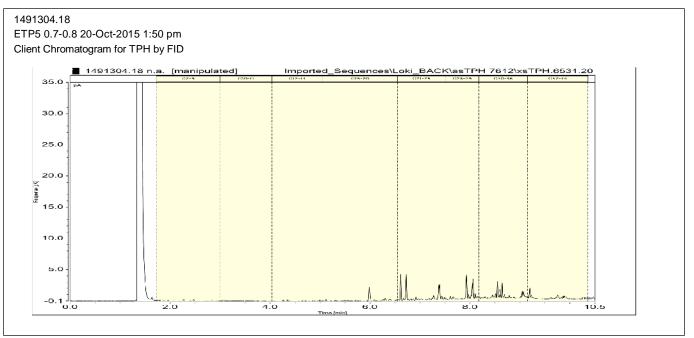
Sample Type: Soil						
	Sample Name:	ETP12 0.1-0.2	ETP12 1.0-1.1	ETP5 0.7-0.8	ETP5 1.5-1.6	ETP11 0.2-0.3
		20-Oct-2015 10:10 am	20-Oct-2015 11:00 am		20-Oct-2015 2:00 pm	20-Oct-2015 8:00 am
	Lab Number:	1491304.13	1491304.14	pm 1491304.18	1491304.19	1491304.21
Organonitro&phosphorus Po				1.0.000		
Bromacil	mg/kg dry wt	< 0.007	_	_	_	< 0.008
Bromopropylate	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Butachlor	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Captan	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Carbaryl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Carbofuran	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Chlorfluazuron	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Chlorothalonil	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Chlorpyrifos	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Chlorpyrifos-methyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Chlortoluron	mg/kg dry wt	< 0.014	-	_	-	< 0.015
Cyanazine	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Cyfluthrin	mg/kg dry wt	< 0.009	-	-	-	< 0.010
Cyhalothrin	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Cypermethrin	mg/kg dry wt	< 0.017	-	-	-	< 0.019
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Diazinon	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Dichlofluanid	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Dichloran	mg/kg dry wt	< 0.03	-	-	-	< 0.03
Dichlorvos	mg/kg dry wt	< 0.010	-	-	-	< 0.010
Difenoconazole	mg/kg dry wt	< 0.010	-	-	-	< 0.011
Dimethoate	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Diphenylamine	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Diuron	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Fenpropimorph	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Fluazifop-butyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Fluometuron	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Flusilazole	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Fluvalinate	mg/kg dry wt	< 0.006	-	-	-	< 0.006
Furalaxyl	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Haloxyfop-methyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Hexaconazole	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Hexazinone	mg/kg dry wt	< 0.004	-	-	-	< 0.004
IPBC (3-lodo-2-propynyl-n-butylcarbamate)	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Kresoxim-methyl	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Linuron	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Malathion	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Metalaxyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Methamidophos	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Metolachlor	mg/kg dry wt	< 0.006	-	-	-	< 0.006
Metribuzin	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Molinate	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Myclobutanil	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Naled	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Norflurazon	mg/kg dry wt	< 0.014	-	-	-	< 0.015
Oxadiazon	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Oxyfluorfen	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Paclobutrazol	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Parathion-ethyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Parathion-methyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Pendimethalin	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Permethrin	mg/kg dry wt	< 0.003	-	-	-	< 0.003
Pirimicarb	mg/kg dry wt	< 0.007	-	-	-	< 0.008

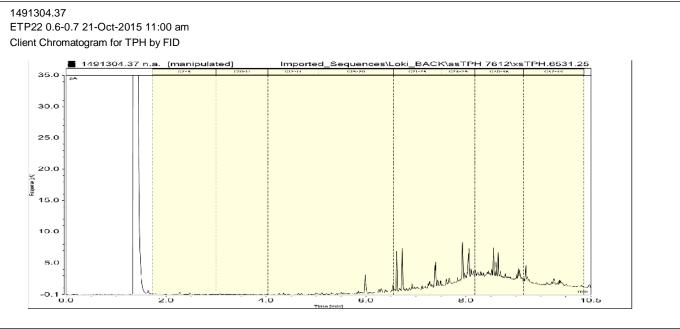
Sample Type: Soil						
S	ample Name:	ETP12 0.1-0.2 20-Oct-2015 10:10 am	ETP12 1.0-1.1 20-Oct-2015 11:00 am	ETP5 0.7-0.8 20-Oct-2015 1:50 pm	ETP5 1.5-1.6 20-Oct-2015 2:00 pm	ETP11 0.2-0.3 20-Oct-2015 8:00 am
	Lab Number:	1491304.13	1491304.14	1491304.18	1491304.19	1491304.21
Organonitro&phosphorus Pestic	cides Trace in MF	R Soil by GCMS				
Pirimiphos-methyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Prochloraz	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Procymidone	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Prometryn	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Propachlor	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Propanil	mg/kg dry wt	< 0.03	-	-	-	< 0.03
Propazine	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Propiconazole	mg/kg dry wt	< 0.006	-	-	-	< 0.006
Pyriproxyfen	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Quizalofop-ethyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Simazine	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Simetryn	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Sulfentrazone	mg/kg dry wt	< 0.04	-	-	-	< 0.04
TCMTB [2-(thiocyanomethylthio benzothiazole,Busan]) mg/kg dry wt	< 0.014	-	-	-	< 0.015
Tebuconazole	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Terbacil	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Terbufos	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Terbumeton	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Terbuthylazine	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Terbuthylazine-desethyl	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Terbutryn	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Thiabendazole	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Thiobencarb	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Tolylfluanid	mg/kg dry wt	< 0.004	-	-	-	< 0.004
Triazophos	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Trifluralin	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Vinclozolin	mg/kg dry wt	< 0.007	-	-	-	< 0.008
Total Petroleum Hydrocarbons i	n Soil					
C7 - C9	mg/kg dry wt	-	< 9	< 8	< 9	< 9
C10 - C14	mg/kg dry wt	-	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	-	< 40	107	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 70	107	< 70	< 70
S	ample Name:		ETP10 0.8-0.9 20-Oct-2015 8:55		ETP19 1.8-1.9 21-Oct-2015 9:45	ETP22 0.6-0.7 21-Oct-2015
	Lab Number:	am 1491304.24	am 1491304.25	am 1491304.29	am 1491304.34	11:00 am 1491304.37
Individual Tests	Las Humber.	5100 1.24	5100 1.20	5100 1.20	5100 1.04	5 155 4.07
Dry Matter	g/100g as rcvd	83	75	76	71	79
Heavy metals, screen As,Cd,Cr						
Total Recoverable Arsenic	mg/kg dry wt	-	6	8	6	23
Total Recoverable Cadmium	mg/kg dry wt	-	< 0.10	< 0.10	< 0.10	1.99
Total Recoverable Chromium	mg/kg dry wt	<u> </u>	23	26	25	42
Total Recoverable Copper	mg/kg dry wt	<u>-</u>	9	11	11	470
Total Recoverable Lead	mg/kg dry wt	-	22	27	26	11,700
Total Recoverable Mercury	mg/kg dry wt	-	< 0.10	0.22	0.19	4.0
Total Recoverable Nickel	mg/kg dry wt	-	17	19	18	47
Total Recoverable Zinc	mg/kg dry wt	-	79	88	85	3,200
BTEX in Soil by Headspace GC				1 00		5,25
Benzene	mg/kg dry wt	-	< 0.06	_	_	_
Toluene	mg/kg dry wt	-	< 0.06	_	-	-
Ethylbenzene	mg/kg dry wt	-	< 0.06	-	-	-
•				-	-	-
· •				_	_	
m&p-Xylene o-Xylene	mg/kg dry wt mg/kg dry wt	-	< 0.12 < 0.06	-	-	-

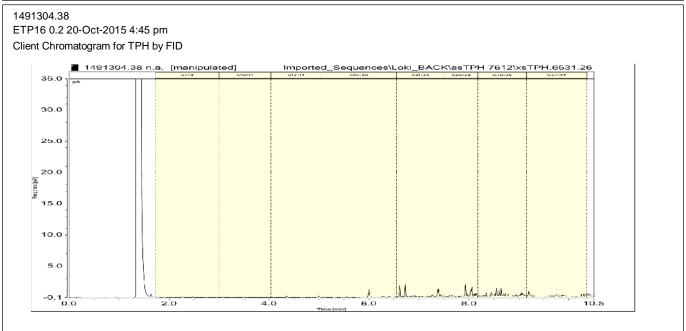
siphe BHC mg/kg dry wt co.0.0010	Sample Type: Soil						
Lab Number 1491304 1		Sample Name:	20-Oct-2015 8:50	20-Oct-2015 8:55	21-Oct-2015 8:25	21-Oct-2015 9:45	21-Oct-2015
Algorithm		Lab Number:					
September C	Organochlorine Pesticides Tr	race in Soil					
Sether BHC	Aldrin	mg/kg dry wt	< 0.0010	-	-	-	-
Jestina BHC mg/kg dy wt	alpha-BHC	mg/kg dry wt	< 0.0010	-	-	-	-
Seamma BHC (Lindane) mg/kg dy wt < 0.0010 - - - - - - - - -	beta-BHC	mg/kg dry wt	< 0.0010	-	-	-	-
Sections might girty wt < 0.0010	delta-BHC	mg/kg dry wt	< 0.0010	-	-	-	-
ranse Chlordane mg/kg dry wt	gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	-	-	-	-
2,4-DDD mg/kg dry wf	cis-Chlordane	mg/kg dry wt	< 0.0010	-	-	-	-
4.4-DDD mg/kg dry wt 0.0010 -	trans-Chlordane	mg/kg dry wt	< 0.0010	-	-	-	-
2,4-DDE mg/kg dry wt < 0.0010	2,4'-DDD	mg/kg dry wt	< 0.0010	-	-	-	-
4.4-DDE	4,4'-DDD	mg/kg dry wt	0.0011	-	-	-	-
2.4-DDT mg/kg dy wt < 0.0010	2,4'-DDE	mg/kg dry wt	< 0.0010	-	-	-	-
A4-DDT	4,4'-DDE	mg/kg dry wt	0.0035	-	-	-	-
Total DDT Isomers	2,4'-DDT	mg/kg dry wt	< 0.0010	-	-	-	-
Dieldrin mg/kg dry wt	4,4'-DDT	mg/kg dry wt	0.0071	-	-	-	-
Endosulfan I mg/kg dry wt co.0010 co.	Total DDT Isomers		0.012	-	-	-	-
Endosulfan II mg/kg dry wt	Dieldrin	mg/kg dry wt		-	-	-	-
Endosulfan sulphate mg/kg dry wt Endrin mg/kg dry wt C 0.0010	Endosulfan I			-	-	-	-
Endrin mg/kg dry wt	Endosulfan II			-	-	-	-
Endrin aldehyde mg/kg dry wt	Endosulfan sulphate			-	-	-	-
Endrin ketone	Endrin			-	-	-	-
Heptachlor	Endrin aldehyde			-	-	-	-
Helpatahlor epoxide mg/kg dry wt examples dry	Endrin ketone			-	-	-	-
Hexachlorobenzene mg/kg dry wt Methoxychlor mg/kg dry wt vertout Clored (clis+trans)* mg/kg dry wt vertout vertout Clored (clis+trans)* mg/kg dry wt vertout v	Heptachlor			-	-	-	-
Methoxychlor mg/kg dry wt < 0.0010 - <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></th<>				-	-	-	-
Total Chlordane [(cis+trans)* mg/kg dry wt 100/42] Organonitro&phosphorus Pesticides Trace in MR Soil by GCMS Acetochlor mg/kg dry wt < 0.008				-	-	-	-
100/42				-	-	-	-
Acetochlor mg/kg dry wt	Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.002	-	-	-	-
Alachlor mg/kg dry wt	Organonitro&phosphorus Pe	sticides Trace in MF	R Soil by GCMS				
Atrazine mg/kg dry wt	Acetochlor	mg/kg dry wt	< 0.008	-	-	-	-
Atrazine-desethyl mg/kg dry wt	Alachlor	mg/kg dry wt	< 0.006	-	-	-	-
Atrazine-desisopropyl mg/kg dry wt	Atrazine	mg/kg dry wt	< 0.008	-	-	-	-
Azaconazole mg/kg dry wt	Atrazine-desethyl	mg/kg dry wt	< 0.008	-	-	-	-
Azinphos-methyl mg/kg dry wt	Atrazine-desisopropyl	mg/kg dry wt	< 0.015	-	-	-	-
Benalaxyl mg/kg dry wt < 0.004 - - - - -	Azaconazole			-	-	-	-
Bitertanol mg/kg dry wt < 0.015 - - - - - - - - -	Azinphos-methyl			-	-	-	-
Bromacil mg/kg dry wt < 0.008 - - - - - - - - -	Benalaxyl			-	-	-	-
Bromopropylate mg/kg dry wt < 0.008 - - - - - - - - -	Bitertanol			-	-	-	-
Butachlor mg/kg dry wt < 0.008 - - - - - - - - - - - - - - - -	Bromacil			-	-	-	-
Captan mg/kg dry wt < 0.015	Bromopropylate			-	-	-	-
Carbaryl mg/kg dry wt < 0.008	Butachlor			-	-	-	-
Carbofuran mg/kg dry wt < 0.008 - - - Chlorfluazuron mg/kg dry wt < 0.008				-	-		-
Chlorfluazuron mg/kg dry wt < 0.008 - <t< td=""><td>Carbaryl</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Carbaryl			-	-	-	-
Chlorothalonil mg/kg dry wt < 0.008 - <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></t<>				-	-	-	-
Chlorpyrifos mg/kg dry wt < 0.008 -				-	-		-
Chlorpyrifos-methyl mg/kg dry wt < 0.008 -				-	-		-
Chlortoluron mg/kg dry wt < 0.015 -				-	-		
Cyanazine mg/kg dry wt < 0.008 - </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td>				-	-		-
Cyfluthrin mg/kg dry wt < 0.009 -<				-	-	-	-
Cyhalothrin mg/kg dry wt < 0.008 -	·			-	-	-	-
Cypermethrin mg/kg dry wt < 0.018 -	·			-	-	-	-
Deltamethrin (including mg/kg dry wt < 0.008 Tralomethrin)				-	-	-	-
Tralomethrin)	•			-	-	-	-
Diazinon mg/kg dry wt < 0.004	Tralomethrin)			-	-	-	-
	Diazinon	mg/kg dry wt	< 0.004			-	<u>-</u>


Path	Sample Type: Soil						
Lab Number 14910434 14910429 14910429 14910434 14910437 1491043		Sample Name:	20-Oct-2015 8:50	20-Oct-2015 8:55	21-Oct-2015 8:25	21-Oct-2015 9:45	21-Oct-2015
Organizativa Aphrosphorus Pesticistica Taze in MR Sol by GCMS		Lah Number					
Dichiofusanid mg/kg dry wt	Organonitro&phosphorus Pest						
Dichlarian	· · ·		-	_	_	-	-
Dichleroce	Dichloran			-	-	-	-
Differences mg/kg dry wt				-	-	-	<u>-</u>
Dimethotate				-	-	-	-
Diphenylamine				-	-	-	-
Diuron				-	-	-	-
Fenpropimorph mg/kg dry wt mg/kg dry wt mg/kg dry wt e 0.008 Flusalizacle Flusalizacle flusalizacle flusalizacle flusalizacle flusalizacle flusalizacle flusalizacle mg/kg dry wt e 0.008 Flusalizacle flusaliz				-	-	-	-
Flucaritory buyl mg/kg dry wt < 0.008	Fenpropimorph		< 0.008	-	-	-	-
Fluorination	Fluazifop-butyl		< 0.008	-	-	-	-
Flusilazole mg/kg dry wt			< 0.008	-	-	-	-
Fluvalinate	Flusilazole			-	-	-	-
Furallaxy() mg/kg dry wt	Fluvalinate		< 0.006	-	-	-	-
Halaoyfop-methyl mg/kg dry wt	Furalaxyl			-	-	-	-
Hexaconazole mg/kg dry vt Hexacinone mg/kg dry vt Hexacinone mg/kg dry vt Vexacinone mg/kg dry vt Vexa				-	-	-	-
Hexazinone mg/kg dry wt	· · · · · · · · · · · · · · · · · · ·		< 0.008	-	-	-	-
bulyloarbanately Kresoxim-methyl mg/kg dry wt < 0.008	Hexazinone			-	-	-	-
Linuron mg/kg dry wt		mg/kg dry wt	< 0.04	-	-	-	-
Malathion mg/kg dry wt < 0.008	Kresoxim-methyl	mg/kg dry wt	< 0.004	-	-	-	-
Metalaxyl mg/kg dry wt < 0.008	Linuron	mg/kg dry wt	< 0.008	-	-	-	-
Methamidophos mg/kg dry wt < 0.04 - - - - Metolachlor mg/kg dry wt < 0.008	Malathion	mg/kg dry wt	< 0.008	-	-	-	-
Metribachlor mg/kg dry wt < 0.006	Metalaxyl		< 0.008	-	-	-	-
Metribuzin mg/kg dry wt < 0.008 -<	Methamidophos	mg/kg dry wt	< 0.04	-	-	-	-
Molinate mg/kg dry wt < 0.015 - <td>Metolachlor</td> <td></td> <td>< 0.006</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Metolachlor		< 0.006	-	-	-	-
Myclobutanil mg/kg dry wt < 0.008 - - - - Naled mg/kg dry wt < 0.04	Metribuzin			-	-	-	-
Naled mg/kg dry wt < 0.04				-	-	-	-
Norflurazon mg/kg dry wt	•			-	-	-	-
Oxadiazon mg/kg dry wt < 0.008				-	-	-	-
Oxyfluorfen mg/kg dry wt < 0.004 -				-	-	-	-
Pacibuturazol mg/kg dry wt < 0.008 - <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></th<>				-	-	-	-
Parathion-ethyl mg/kg dry wt < 0.008				-	-	-	-
Parathion-methyl mg/kg dry wt < 0.008 - - - - Pendimethalin mg/kg dry wt < 0.008				-	-	-	-
Pendimethallin mg/kg dry wt < 0.008 - - - - Permethrin mg/kg dry wt < 0.003	•			-	-	-	-
Permethrin mg/kg dry wt < 0.003 - - - - Pirimicarb mg/kg dry wt < 0.008	•	0 0 ,					
Pirimicarb mg/kg dry wt < 0.008 - - - - Pirimiphos-methyl mg/kg dry wt < 0.008				-	-		-
Primiphos-methyl mg/kg dry wt < 0.008 - - - Prochloraz mg/kg dry wt < 0.04				-	-		-
Prochloraz mg/kg dry wt < 0.04 - - - - Procymidone mg/kg dry wt < 0.008				-		-	-
Procymidone mg/kg dry wt < 0.008 - - - - Prometryn mg/kg dry wt < 0.004				-		-	-
Prometryn mg/kg dry wt < 0.004 - - - - Propachlor mg/kg dry wt < 0.008				-	-		
Propachlor mg/kg dry wt < 0.008 - - - - Propanil mg/kg dry wt < 0.003	•			<u>-</u>	<u>-</u>		
Propanil mg/kg dry wt < 0.03 - - - - Propazine mg/kg dry wt < 0.004	·			_	_	<u>-</u>	<u>-</u>
Propazine mg/kg dry wt < 0.004 - - - - Propiconazole mg/kg dry wt < 0.006				-	-	_	-
Propiconazole mg/kg dry wt < 0.006 - - - - Pyriproxyfen mg/kg dry wt < 0.008				-	-		<u> </u>
Pyriproxyfen mg/kg dry wt < 0.008 - - - - Quizalofop-ethyl mg/kg dry wt < 0.008				_	_		-
Quizalofop-ethyl mg/kg dry wt < 0.008 - - - - Simazine mg/kg dry wt < 0.008				-	-	-	-
Simazine mg/kg dry wt < 0.008 - <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>				-	-	-	-
Simetryn mg/kg dry wt < 0.008 - <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>				-	-	-	-
Sulfentrazone mg/kg dry wt < 0.04 - - - - TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan] mg/kg dry wt < 0.015				-	-	-	-
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan] mg/kg dry wt benzothiazole,Busan] - </td <td>•</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	•			-	-	-	-
Tebuconazole mg/kg dry wt < 0.008 - - - - - - Terbacil mg/kg dry wt < 0.008	TCMTB [2-(thiocyanomethylthi benzothiazole,Busan]		< 0.015	-	-	-	-
	Tebuconazole	mg/kg dry wt	< 0.008	-	-	-	-
Terbufos mg/kg dry wt < 0.008	Terbacil		< 0.008	-	-	-	
	Terbufos	mg/kg dry wt	< 0.008	-	-	-	-


Sample Type: Soil						
s	Sample Name:	ETP10 0.2-0.3 20-Oct-2015 8:50 am	ETP10 0.8-0.9 20-Oct-2015 8:55 am	ETP13 0.8-0.9 21-Oct-2015 8:25 am	ETP19 1.8-1.9 21-Oct-2015 9:45 am	ETP22 0.6-0.7 21-Oct-2015 11:00 am
	Lab Number:	1491304.24	1491304.25	1491304.29	1491304.34	1491304.37
Organonitro&phosphorus Pesti		R Soil by GCMS		1		
Terbumeton	mg/kg dry wt	< 0.008	-	-	-	-
Terbuthylazine	mg/kg dry wt	< 0.004	-	-	-	-
Terbuthylazine-desethyl	mg/kg dry wt	< 0.008	-	-	-	-
Terbutryn	mg/kg dry wt	< 0.008	-	-	-	-
Thiabendazole	mg/kg dry wt	< 0.04	-	_	-	-
Thiobencarb	mg/kg dry wt	< 0.008	-	_	-	-
Tolylfluanid	mg/kg dry wt	< 0.004	-	-	-	-
Triazophos	mg/kg dry wt	< 0.008	-	-	-	-
Trifluralin	mg/kg dry wt	< 0.008	-	-	-	-
Vinclozolin	mg/kg dry wt	< 0.008	-	_	-	-
Pentachlorophenol Screening in		<u>. </u>				
Pentachlorophenol (PCP)	mg/kg dry wt	-	_	< 0.05	-	
2,3,4,6-Tetrachlorophenol (TCF		_	_	< 0.05	-	<u>-</u>
Tributyl Tin Trace in Soil sample				\ 0.00		
Dibutyltin (as Sn)	mg/kg dry wt			_	_	< 0.005
, , ,		-	-	<u>-</u>	-	
Monobutyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.007
Tributyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.004
Triphenyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.003
Total Petroleum Hydrocarbons				1		
C7 - C9	mg/kg dry wt	-	< 9	< 9	< 9	< 9
C10 - C14	mg/kg dry wt	-	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	-	< 40	< 40	< 40	410
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 70	< 70	< 70	410
S	Sample Name:	ETP16 0.2 20-Oct-2015 4:45 pm	ETP17 0.2 20-Oct-2015 4:00 pm	ETP17 2.2 20-Oct-2015 4:00 pm		
	Lab Number:	1491304.38	1491304.42	1491304.44		
Individual Tests						
Dry Matter	g/100g as rcvd	88	88	68	-	-
Heavy metals, screen As,Cd,C	r,Cu,Ni,Pb,Zn,Hg	l				
Total Recoverable Arsenic	mg/kg dry wt	6	-	8	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	< 0.10	-	-
Total Recoverable Chromium	mg/kg dry wt	19	-	23	-	-
Total Recoverable Copper	mg/kg dry wt	10	-	12	-	-
Total Recoverable Lead	mg/kg dry wt	28	-	27	-	-
Total Recoverable Mercury	mg/kg dry wt	0.15	-	< 0.10	-	-
Total Recoverable Nickel	mg/kg dry wt	14	-	18	-	-
Total Recoverable Zinc	mg/kg dry wt	72	-	80	-	-
BTEX in Soil by Headspace G0		I	I	I		
Benzene	mg/kg dry wt	_	_	< 0.07	-	
Toluene	mg/kg dry wt	-	_	< 0.07	-	<u> </u>
Ethylbenzene	mg/kg dry wt	-	-	< 0.07	-	<u>-</u>
m&p-Xylene	mg/kg dry wt	-	_	< 0.13	-	
o-Xylene	mg/kg dry wt	-	-	< 0.13	-	
Organochlorine Pesticides Trad						
Aldrin	mg/kg dry wt	< 0.0010	< 0.0010	_	-	
alpha-BHC			< 0.0010	-	-	-
beta-BHC	mg/kg dry wt	< 0.0010 < 0.0010	< 0.0010 < 0.0010	-	-	<u>-</u>
delta-BHC	mg/kg dry wt			-	-	<u> </u>
ueila-DITC	mg/kg dry wt	< 0.0010	< 0.0010	<u>-</u>		
gommo BUC /I index==\	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
gamma-BHC (Lindane)		- 0 0040	- 0.0040			
cis-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
cis-Chlordane trans-Chlordane	mg/kg dry wt mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
cis-Chlordane	mg/kg dry wt			-		


Sample Type: Soil				l l		
S	Sample Name:	ETP16 0.2 20-Oct-2015 4:45	ETP17 0.2 20-Oct-2015 4:00	ETP17 2.2 20-Oct-2015 4:00		
		pm	pm	pm		
	Lab Number:	1491304.38	1491304.42	1491304.44		
Organochlorine Pesticides Trac	ce in Soil					
2,4'-DDE	mg/kg dry wt	< 0.0010	0.011	-	-	-
4,4'-DDE	mg/kg dry wt	0.131	1.52	-	-	-
2,4'-DDT	mg/kg dry wt	0.0089	0.159	-	-	-
4,4'-DDT	mg/kg dry wt	0.093	0.59	-	-	-
Total DDT Isomers	mg/kg dry wt	0.24	2.3	-	-	-
Dieldrin	mg/kg dry wt	< 0.0010	< 0.002	-	-	-
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Endrin	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Endrin ketone	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Heptachlor	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Methoxychlor	mg/kg dry wt	< 0.0010	< 0.0010	-	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.002	< 0.002	-	-	-
Organonitro&phosphorus Pesti						
Acetochlor	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Alachlor	mg/kg dry wt	< 0.006	< 0.006	-	-	-
Atrazine	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Atrazine-desethyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Atrazine-desisopropyl	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Azaconazole	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Azinphos-methyl	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benalaxyl	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Bitertanol	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Bromacil	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Bromopropylate	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Butachlor	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Captan	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Carbaryl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Carbofuran	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Chlorfluazuron	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Chlorothalonil	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Chlorpyrifos methyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Chlorpyrifos-methyl Chlortoluron	mg/kg dry wt	< 0.007 < 0.014	< 0.007 < 0.014	-	-	<u>-</u>
Cyanazine	mg/kg dry wt	< 0.014	< 0.014	-	<u>-</u>	<u>-</u>
		< 0.007	< 0.007	-	<u>-</u>	<u>-</u>
Cyfluthrin Cyhalothrin	mg/kg dry wt		< 0.009	-	-	<u> </u>
	mg/kg dry wt	< 0.007 < 0.017	< 0.007	-	<u>-</u>	<u> </u>
Cypermethrin Deltamethrin (including	mg/kg dry wt	< 0.017	< 0.017	-	<u>-</u>	<u>-</u>
Tralomethrin)				_	-	_
Diazinon	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Dichlorun	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Dichloran Dichloryos	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Dichlorvos Difenoconazole	mg/kg dry wt	< 0.010 < 0.010	< 0.010 < 0.010	-	-	-
Dimethoate	mg/kg dry wt	< 0.010	< 0.010	-	-	<u> </u>
Dilliculoate	mg/kg dry wt	< 0.014	< 0.014	-	-	<u> </u>
Dinhenylamine		\ \ U.U14	< 0.014		-	-
Diphenylamine Diuron			0.010	_	_	_
Diphenylamine Diuron Fenpropimorph	mg/kg dry wt mg/kg dry wt	< 0.007 < 0.007	0.010 < 0.007	-	-	-


Sample Type: Soil						
	Sample Name:	ETP16 0.2 20-Oct-2015 4:45	ETP17 0.2 20-Oct-2015 4:00			
	Lab Number:	pm 1491304.38	pm 1491304.42	pm 1491304.44		
Organonitro&phosphorus Pes			1431304.42	1431304.44		
Fluometuron	mg/kg dry wt	< 0.007	< 0.007	_		_
Flusilazole	mg/kg dry wt	< 0.007	< 0.007	_		_
Fluvalinate	mg/kg dry wt	< 0.006	< 0.006	_		_
Furalaxyl	mg/kg dry wt	< 0.004	< 0.004	-		_
Haloxyfop-methyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Hexaconazole	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Hexazinone	mg/kg dry wt	< 0.004	< 0.004	-	-	-
IPBC (3-lodo-2-propynyl-n-	mg/kg dry wt	< 0.04	< 0.04	-	-	-
butylcarbamate) Kresoxim-methyl	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Linuron	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Malathion	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Metalaxyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Methamidophos	mg/kg dry wt	< 0.04	< 0.04	-	-	-
Metolachlor	mg/kg dry wt	< 0.006	< 0.006	-	-	-
Metribuzin	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Molinate	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Myclobutanil	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Naled	mg/kg dry wt	< 0.04	< 0.04	-	-	-
Norflurazon	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Oxadiazon	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Oxyfluorfen	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Paclobutrazol	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Parathion-ethyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Parathion-methyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Pendimethalin	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Permethrin	mg/kg dry wt	< 0.003	< 0.003	-	-	-
Pirimicarb	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Pirimiphos-methyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Prochloraz	mg/kg dry wt	< 0.04	< 0.04	-	-	-
Procymidone	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Prometryn	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Propachlor	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Propanil	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Propazine	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Propiconazole	mg/kg dry wt	< 0.006	< 0.006	-	-	-
Pyriproxyfen	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Quizalofop-ethyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Simazine	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Simetryn	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Sulfentrazone TCMTB [2-(thiocyanomethylthi	mg/kg dry wt io) mg/kg dry wt	< 0.04 < 0.014	< 0.04 < 0.014	-	-	-
benzothiazole,Busan] Tebuconazole	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Terbacil	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Terbufos	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Terbumeton	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Terbuthylazine	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Terbuthylazine-desethyl	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Terbutryn	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Thiabendazole	mg/kg dry wt	< 0.04	< 0.04	-	-	-
Thiobencarb	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Tolylfluanid	mg/kg dry wt	< 0.004	< 0.004	-	-	-
Triazophos	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Trifluralin	mg/kg dry wt	< 0.007	< 0.007	-	-	-


Sample Type: Soil						
Sa	mple Name:	ETP16 0.2	ETP17 0.2	ETP17 2.2		
	-	20-Oct-2015 4:45	20-Oct-2015 4:00	20-Oct-2015 4:00		
		pm	pm	pm		
	ab Number:	1491304.38	1491304.42	1491304.44		
Organonitro&phosphorus Pestici	des Trace in MF	R Soil by GCMS				
Vinclozolin	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Polycyclic Aromatic Hydrocarbon	s Screening in S	Soil				
Acenaphthene	mg/kg dry wt	-	< 0.03	-	-	-
Acenaphthylene	mg/kg dry wt	-	0.24	-	-	-
Anthracene	mg/kg dry wt	-	0.34	-	-	-
Benzo[a]anthracene	mg/kg dry wt	-	3.9	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	6.0	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	7.2	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	4.5	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	2.7	-	-	-
Chrysene	mg/kg dry wt	-	3.9	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	0.90	-	-	-
Fluoranthene	mg/kg dry wt	-	7.2	-	-	-
Fluorene	mg/kg dry wt	-	0.05	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	4.7	-	-	-
Naphthalene	mg/kg dry wt	-	0.14	-	-	-
Phenanthrene	mg/kg dry wt	-	1.91	-	-	-
Pyrene	mg/kg dry wt	-	6.7	-	-	-
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 8	-	< 10	-	-
C10 - C14	mg/kg dry wt	< 20	-	< 20	-	-
C15 - C36	mg/kg dry wt	42	-	< 40	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	-	< 70	-	-

Analyst's Comments

It has been noted that the method performance for Iprodione for ONOP analysis is not acceptable therefore we are unable to report this compound at this present time.

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 3, 5, 11, 14, 18-19, 21, 25, 29, 34, 37-38, 44
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1, 3, 5, 11, 14, 18-19, 21, 25, 29, 34, 37-38, 44
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	11, 14, 25, 44
Organochlorine/nitro&phosphorus Pest.s Trace in Soils, GC-MS	Sonication extraction, GPC cleanup, GC-MS analysis. Tested on as received sample	0.0010 - 0.03 mg/kg dry wt	5, 10, 13, 21, 24, 38, 42
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC-MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	0.010 - 0.05 mg/kg dry wt	42
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction with sonication, dilution, analysis by LCMSMS with online SPE. Tested on dried sample	0.010 mg/kg dry wt	29
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	37
Total Petroleum Hydrocarbons in Soil*	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	1, 3, 5, 11, 14, 18-19, 21, 25, 29, 34, 37-38, 44
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1, 3, 5, 10-11, 13-14, 18-19, 21, 24-25, 29, 34, 37-38, 42, 44
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1, 3, 5, 11, 14, 18-19, 21, 25, 29, 34, 37-38, 44

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Private Bag 3205 Hamilton 3240, New Zea

R J Hill Laboratories Limi Received by: Natalia Leatua

1 Clyde Street

ob Information Summany

|Riggs 1 of 3|

Client:

AECOM Consulting Services (NZ) Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

Lab No:

1491304

Date Registered:

22-Oct-2015 8:41 am

Priority:

Normal

Quote No: Order No:

60444747

Client Reference: 60444747

Add. Client Ref: Submitted By:

S McDonald

Charge To: Target Date: AECOM New Zealand Limited

27-Oct-2015 4:30 pm

Samples

	No.	Sample Plane	Sample type	69000000	Tests Requested
	1	ÆTP3 0.2-0.3 20-Oct-2015 2:46 pm	Soil	GSoil300, GSoil300	Holacoid TPH, HM+Ha (Scraen)
	2	ETP3 0.8-0.9 20-Oct-2015 2:45 pm	Soil	GSoll300, GSoll300	Hold Cold
	3	ETP3 1.5-1.9 20-Oct-2015 3:00 pm	Soll	GSoil300, GSoil300	Holacold TPH, HM+ Hg (Screen)
	4	ETP3 2.6-2.7 20-Oct-2015 3:00 pm	Soil	GSoil300, GSoll300	Hold Cold
-	5	ETP14 0.2-0.3 20-Oct-2015 1:00 pm	Soil	cGSoil, cGSoil	Hold 2014 TPH, HM+Ha (Screen), ONOF OCP (Frace
	6	ETP14 1.3 20-Oct-2015 1:10 pm	Soil	cGSoll, cGSoil	Hold Cold
	7	ETP14 2.4 20-Oct-2015 1:10 pm	Soll	GSoll300, cGSoil	Hold Cold
	8	ETP14 3 20-Oct-2015 1:10 pm	Soil	GSoil300, cGSoil	Hold Cold
	9	ETP15 0.2-0.3 20-Oct-2015 12:00 pm	Soil	GSoil300, cGSoil	Hold Cold
	10	ETP15 0.7-0.8 20-Oct-2015 12:00 pm	Soil	GSoil300, cGSoil	Hold Gold ONDP & OCP (Trace)
	11	ETP15 1.5-1.6 20-Oct-2015 12:10 pm	Soil	GSoil300, GSoil300	Hold Cold TPH, HM+Hq (Screen), BTEX
Ľ	12	ETP15 20-Oct-2015 12:30 pm	Soil	GSoil300, GSoil300	Hold Cold
	13	ETP12 0.1-0,2 20-Oct-2015 10:10 am	Soil	cGSoll, cGSoll	Holderold ONOP & OCP (Trace)
7	14	ETP12 1.0-1.1 20-Oct-2015 11:00 am	Soil	cGSoll, cđSoll	HOWEOUT TOH, HM+Hg (Schan), BTEX
1	15	ETP12 1.8-1.9 20-Oct-2015 11:15 \searrow am	Soil	GSoil300, cGSoil	Hold Cold
1	16	ETP12 2.7-2.8 20-Oct-2015 11:25 am	Soil	cGSoil, cGSoil	Hold Cold
1	7	ETP5 0.2-0.3 20-Oct-2015 1:38 pm	Soil	GSoll300, cGSoll	Hold Cold
1	8	ETP5 0.7-0.8 20-Oct-2015 1:50 pm	Soil	GSoil300, GSoil300	Holdeold TPH, HM+Ha (Screen)
1	9	ETP5 1.5-1.6 20-Oct-2015 2:00 pm	Soil	GSoil300, GSoil300	Hold Gold TP 4. HM + Hg (Screen)
2	<u>'</u> 0	ÆTP5 2.8 20-Oct-2015 2:10 pm	Soll	GSoil300, GSoil300	Hold Cold
2	11	ETP11 0.2-0.3 20-Oct-2015 8:00 am	Soil	GSoll300, GSoll300	Hold cold TPH, HM+Hg(Screen), ONOP. OCP(Trace)
2	2	ETP11 0.9-1.0 20-Oct-2015 8:10 am	-Soil	cGSoil, cGSoil	Hold Cotd
2	3	ETP11 2.0-2.1 20-Oct-2015 9:30 am	Soll	cGSoil, cGSoil	Hold Cold
2	4	ETP10 0.2-0.3 20-Oct-2015 8:50 am	Soil	cGSoil, cGSoil	Hold-cold ONOP a OCP (Trace)
2	- 9	ETP10 0.8-0.9 20-Oct-2015 8:55 am	Soil	GSail300, cGSoil	Hold-cold ONOP a OCP (Trace) Hold-cold TPH, HM+Hg (Screen), BTEY
2	6	ETP10 1.8 20-Oct-2015 9:00 am	Soil	cGSoil, cGSoil	Hold Cold
2	7	ETP10 3.0 20-Oct-2015 9:15 am 📝	Soft	GSoll300, cGSoil	Hold Cold
2	1	ETP13 0.1-0.2 21-Oct-2015 8:15 am	Soil	GSoll300, cGSoll	Hold Cold

Lab No: 1491304 Hill Laboratories

Page 1 of 2

Skili	pi x			
344)	Sample Name	Statement (Type)	કું મહોતાલાં ક	Tooks Pringueshed
29	ETP13 0.8-0.9 21-Oct-2015 8:25 am	Soil	GSoil300, GSoil300	Hold Cold TIPH, HM + Hg (Screen), PCP (Trac
30	ETP13 1.7-1.8 21-Oct-2015 8:45 am	Soil	GSoil300, GSoil300	Hold Cold
31	ETP13 2.9-3.0 21-Oct-2015 8:50 am	Soll	GSoil300, GSoil300	Hold Cold
32	ETP19 0.2-0.3 21-Oct-2015 9:30 am	Soll	GSoll300, GSoll300	Hold Cotd
33	ETP 0.9-1.0 21-Oct-2015 9:40 am	Soll	GSoil300, GSoil300	Hold Cold
34	ETP19 1.8-1.9 21-Oct-2015 9:45 am	√ Soil	GSoll300, GSoil300	Holdeold TPH, HMT Hg (Screen)
35	ETP19 2.8-2.9 21-Oct-2015 9:50 am	Soil	GSoil300, GSoil300	
36	ETP22 0.2-0.3 21-Oct-2015 10:20 am	Soil	GSoil300, GSoil300	
37	ETP22 0.6-0.7 21-Oct-2015 11:00 am	Soil	GSoll300, GSoll300	Hold Cold TPH, LAM+ Hg (Screen), TBT (Val Hold Cold TPH, HM+ Hg (Screen), ONOP OC
38	ETP16 0.2 20-Oct-2015 4:45 pm	Soil	GSoil300, GSoil300	Hold Edid TPH, HM+Hq (Screen), ONOP OC
39	ETP16 1.1 20-Oct-2015 4:45 pm	Soil	GSoll300, GSoll300	Hold Cold
40	ETP16 1.9 20-Oct-2015 4:50 pm	Soil	GSoil300, GSoil300	Hold Cold
41	ETP16 3.2-3.3 20-Oct-2015 4:50 pm	Soil	GSoil300, GSoil300	Hold Cold
42	ETP17 0.2 20-Oct-2015 4:00 pm	Soil	GSoil300, GSoil300	Hold Gold () NOP a OCP (Trace)
43	ETP17 1.0-1.1 20-Oct-2015 4:00 pm	Soil	GSoil300	Hold Cold
44	ETP17 2.2 20-Oct-2015 4:00 pm	Soll	GSoil300, GSoil300	Holacold TPH, Itm+1+4 (Screen), BTEX
45	ETP17 2.7-2.8 20-Oct-2015 4:10 pm	Soll	GSoil300, GSoil300	
46	ETP15 1-1.1 20-Oct-2015 4:00 pm	Soil	cGSoil	Hold Cold

Lab No: 1491304

Form:

Chain of Custody & Analysis R	keaues	t Fo	rm																				Leatua	9	
AECOM - Christchurch				enter de la companya						Lal	orato	ry E	etai	s			Tel	·	07.8	58 20	00		ᇣ		
PO Box 710		F	Phone: 0	03 966 6	119					į	. Name:	•			ratorie	s Ltd	Fax			58 20					
Christchurch 8140		F	ax: 03 9	966 600 ⁻	1					Lab.	. Addre:	ss:	1 Clyd	e St, F	Hamilto	n				Report					
		E	Email: <u>h</u>	<u>nannah</u>	.wrigh	nt@ae	com.c	<u>com</u>			tact Na							al Re			-,.		ì		-
										Lab.	. Ref:							o Quo							
Project Name:		Projec				604447				Pui	rchas	e Or	der i	Num	ber:										
Sample collected by: Scott McDonald	<u></u>	Sampl	le Res	ults to	be re	eturne	ed to:		Hannah Wrigh	t of A	AECOM	Cons	ulting	Sen	vices										
Specifications:	***				1 1000		(Tick)									An	alysis	Re	que	st	T Do				
Urgent TAT required? (please circle: 24hr 48hrdays)			<u> </u>	Yes			No		□ N/A											1000 H	Re	marks	x com	ments	-
2. Fast TAT Guarantee Required?			─ #	Yes			No		N/A		>						-				-				\dashv
3. Is any sediment layer present in waters to be excluded from extractions?	***************************************		T	Yes			No		N/A		+ Mercury									A COLUMN TO A COLU	-				\dashv
Special storage requirements?			T IT	Yes			No		N/A		₩		5												-
5. Preservation requirements?			T I	Yes			No		N/A		+	lž	rst /	_	Ű.	(ii)					-				-
6. Other requirements? Fax Hard copy	✓ Email			Yes			No		□ N/A		tals	ğ	힏	빙빙	18	AC					-				\dashv
7. Report Format: Email: hannah.wright@aecom.com	8. Project Mana	ger: H Wr	ight					tel:	03 966 6119	용	N Se	트	<u> </u>	{ } }	E	뀌					-				ᅱ
Lab. Sample ID Sampling Date &	Sampling Date		Matrix		./-	Prese	rvation		Container	၁	Z E	의	×	티트	유) s									\exists
ID Sample ID time (on)	& Time (off)	soil	water	other	filt'ed	acid	ice	other	(No. & type)	Hold Cold	Heavy Metals 4 (SCREEN)	TPH (oil Industry)	BTEX (oil industry)	TBT (TRACE	ONOP (TRACE)	OCPs (TRACE)					-				\dashv
ETPIS 1.5-16											Ť					\dashv		\Box							-
TETPIS PAR =400																							***		
STP12 6.1-1.1																		П			1				
CE1912 1-1.1																		П							
ETP12 1.8-19																									
ET12 2.7-28																									
ETPS 0-203																							***		
ETPS 8.8										/															
OTPS 1.5-1.6											-														
EP5 28				Was .							·														
	Received b	oy:									ived in	good	Y	es/No	/NA	Metho	d of Si	hipme	- 1	ourica		stal-	D 11		- Committee
Name:	A	er							Date: ZI I C	Sam chille	ples rec ed?	eived	Y	es/No		Consi No.	gnmen	t Note		eane	- <u>-</u>		- ву На	i nd _ _	
of: Time:	of:	11:1	Le	201				M/Mini	Time: 0800	-	2.9	٥ (Y	es/No/	'NA	Transı	port Co):							

AECOM

			_								<u>,,</u>					1							<u> </u>		_
Chain of C	<u>ustody & Ar</u>	<u>nalysis F</u>	<u>Reques</u>	<u>t Fc</u>	rm			. 2271	,																
AECOM - Christchurch												Lal	oorato	ory E)etai	s			Tel:	07	858 20	000			
PO Box 710					Phone	: 03 966	6119					Lab	. Name	:	R J Hil	I Labo	oratorie	s Ltd	Fax	: 07	858 20	01			
Christchurch 8140						3 966 60						Lab	. Addre	ss:	1 Clyd	e St, I	Hamilto	n	Pre	liminar	y Repor	t by:			
					Email:	<u>hanna</u>	h.wrigl	nt@ae	com.c	<u>com</u>	_	Con	itact Na	me:	Jean C	onnic	:k		Fina	al Repo	ort by:				
			- 120000									Lab	. Ref:						Lab	Quote	No:				
Project Name:				Proje	ect Nu	mber:		604447	747			Pu	rchas	e Or	der l	Vun	nber:								
Sample collected	by:	Scott McDonald	d	Sam	ple Re	esults t	o be r	eturn	ed to:		Hannah Wrig	ht of /	AECOM	I Con:	sulting	Ser	vices								
Specifications:							and the second		(Tick)	A) 1 47 9								Ana	alysis	Requ	ıest				
																						Re	marks &	com	mer
1. Urgent TAT required? (p		rdays)				Yes			No		N/A														
2. Fast TAT Guarantee Re						Yes			No		N/A		ury												
	esent in waters to be exclude	ed from extractions?				Yes		<u> </u>	No		N/A		erc												
Special storage requiren	······					Yes		perment	No		N/A		Σ	[]	stry		ان								
5. Preservation requiremen						Yes		<u> </u>	No		N/A		<u>s</u>	nst	g G	ijlμ	기일	빙							-
6. Other requirements?			✓ Email		11-2-1-4	Yes	; 		No	4-1-	N/A	- p	S eta	Pu	i= {	5 2	[[2]	Σl							
	nail: hannah.wright@aecom.c	·	Project Mana	Ĭ			T			tel:	03 966 6119	Cold	E M	<u>=</u>	0 5	- A		티							
Lab. ID	Sample ID	Sampling Date & time (on)	Sampling Date & Time (off)	soil	Matri	X	filt'ed	Prese	rvation lce	other	Container (No. & type)	Hold	Heavy Metals + Mercury (SCREEN)	TPH (oil Industry)	BTEX (oil industry)	TRT (TRACE)	ONOP (TRACE)	OCPs (TRACE)							
ETP3	0.2-0.3									02101	(1.0.0.0)		1 2	╫	ш		- 0	-							
TTP2	08-09														\vdash	\top	\top								
E1P3	15-19															\dagger							nene u		
E113	2.6 - 2-7											/				1									
CTPIL	0.4-0-3																								
ETP14	1.3																								
ETPIL	2.4																								
ETPIL	3'																							Re	(Alia-sa)
ETAIS	0.2																						31149	ceiv	
CTIS	0.7-6.8					ļ		,															1304	Received by:	C
Relinquished By:	300-		Received	by:									eived in dition?	good	Y	es/No	/NA	Metho	d of Sh	nipment	1			ν N	
Name:		Date:	Name:	*****		***************************************					Date:	Sam	ples red	eived	Y	es/No	/NA	Consi	gnmen	t Note	Tourie	— <u> </u>		Natalia	Ų · .
of:		Time:	of:			· h.h					Time:	-			Y	es/No	/NA		oort Co);	1			ia Leatua	C

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

NALYSIS $R\ E\ P\ O\ R\ T$

Page 1 of 6

SPv1

Client:

AECOM Consulting Services (NZ) Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

Lab No: **Date Registered: Date Reported:**

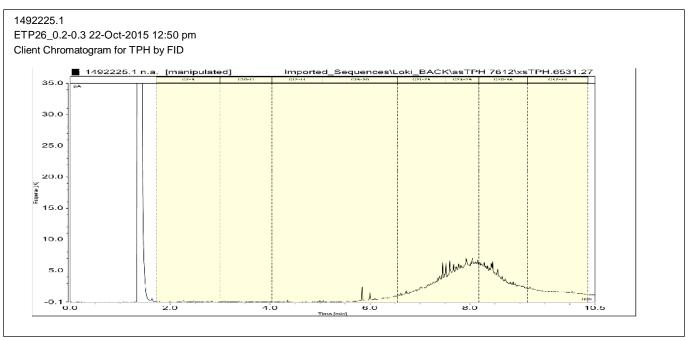
Quote No:

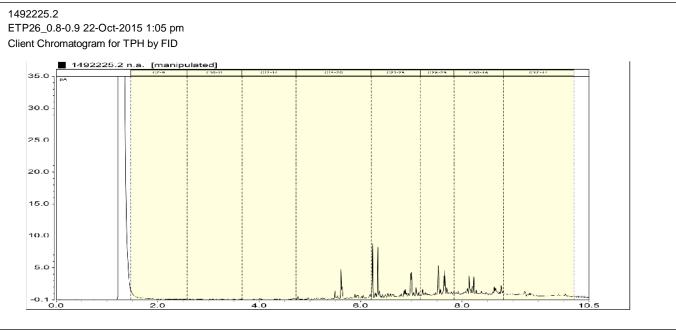
Order No:

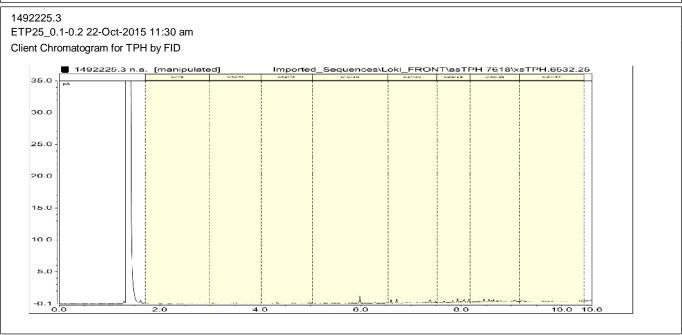
60444747

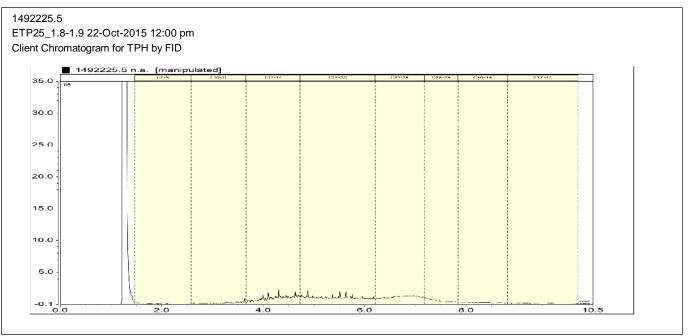
1492225

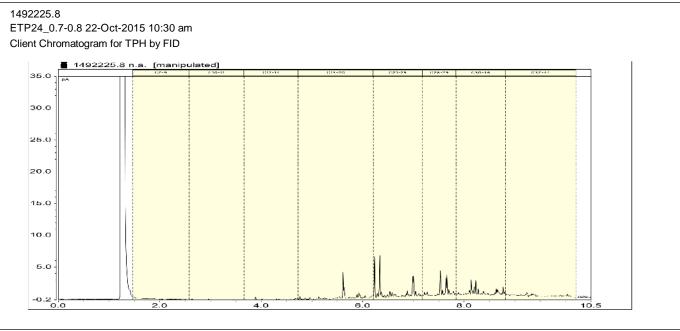
23-Oct-2015

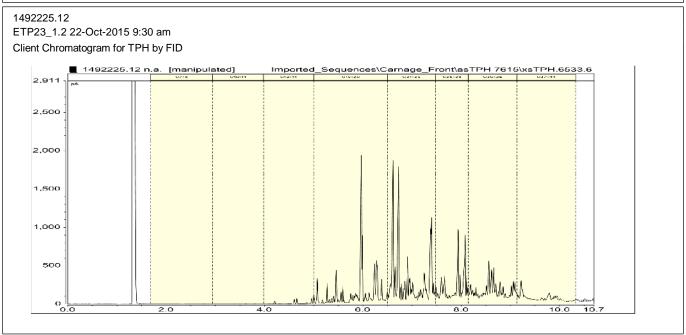

04-Nov-2015

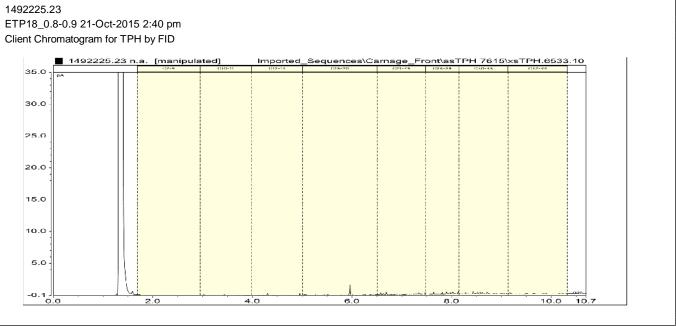

Client Reference: 60444747 **Submitted By:** S McDonald

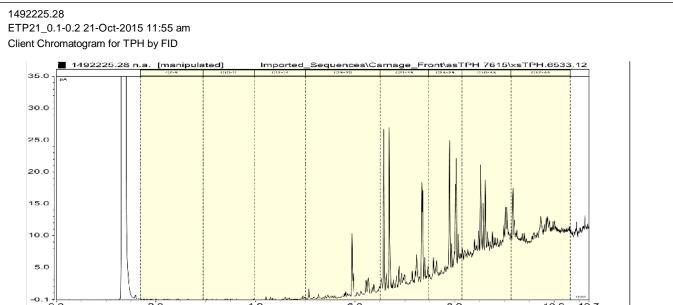

Sample Type: Soil						
	Sample Name:	ETP26_0.2-0.3 22-Oct-2015 12:50 pm	ETP26_0.8-0.9 22-Oct-2015 1:05 pm	ETP25_0.1-0.2 22-Oct-2015 11:30 am	ETP25_1.8-1.9 22-Oct-2015 12:00 pm	ETP24_0.7-0.8 22-Oct-2015 10:30 am
	Lab Number:	1492225.1	1492225.2	1492225.3	1492225.5	1492225.8
Individual Tests						
Dry Matter	g/100g as rcvd	91	83	84	69	90
Heavy metals, screen As,Cd,C	Cr,Cu,Ni,Pb,Zn,Hg		'			1
Total Recoverable Arsenic	mg/kg dry wt	7	5	5	5	6
Total Recoverable Cadmium	mg/kg dry wt	0.18	0.23	0.20	< 0.10	0.20
Total Recoverable Chromium	mg/kg dry wt	19	10	15	24	15
Total Recoverable Copper	mg/kg dry wt	590	91	29	8	32
Total Recoverable Lead	mg/kg dry wt	29	35	87	23	58
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.14
Total Recoverable Nickel	mg/kg dry wt	20	22	19	18	16
Total Recoverable Zinc	mg/kg dry wt	250	112	122	79	106
Tributyl Tin Trace in Soil samp	oles by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	-	0.26	-	-	-
Monobutyltin (as Sn)	mg/kg dry wt	-	0.081	-	-	-
Tributyltin (as Sn)	mg/kg dry wt	-	1.03	-	-	-
Triphenyltin (as Sn)	mg/kg dry wt	-	< 0.003	-	-	-
Total Petroleum Hydrocarbons	in Soil		'			1
C7 - C9	mg/kg dry wt	< 8	< 8	< 8	< 10	< 8
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	156	< 20
C15 - C36	mg/kg dry wt	570	240	< 40	310	210
Total hydrocarbons (C7 - C36)	mg/kg dry wt	570	240	< 70	470	210
	Sample Name:	ETP24_2.0-2.1 22-Oct-2015 10:30 am	ETP23_0.8-0.9 22-Oct-2015 9:20 am	ETP23_1.2 22-Oct-2015 9:30 am	ETP08_0.2-0.3 22-Oct-2015 7:50 am	ETP08_1.8-1.9 22-Oct-2015 8:10 am
	Lab Number:	1492225.9	1492225.11	1492225.12	1492225.14	1492225.16
Individual Tests						
Dry Matter	g/100g as rcvd	71	89	59	93	74
Heavy metals, screen As,Cd,C	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	7	3	17	< 2	6
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.22	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	22	8	8	10	20
Total Recoverable Copper	mg/kg dry wt	8	43	27	108 #1	6
Total Recoverable Lead	mg/kg dry wt	21	11.1	34	16.6 #1	18.6
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	0.11	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	15	27	12	27	13
Total Recoverable Zinc	mg/kg dry wt	71	81	50	83	61
Pentachlorophenol Screening i	in Soil by LCMSMS	3				




Sample Type: Soil						
s	Sample Name:	ETP24_2.0-2.1 22-Oct-2015 10:30 am	ETP23_0.8-0.9 22-Oct-2015 9:20 am	ETP23_1.2 22-Oct-2015 9:30 am	ETP08_0.2-0.3 22-Oct-2015 7:50 am	ETP08_1.8-1.9 22-Oct-2015 8:10 am
	Lab Number:	1492225.9	1492225.11	1492225.12	1492225.14	1492225.16
Pentachlorophenol Screening in		5		ı		
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.05	-	-	-	-
2,3,4,6-Tetrachlorophenol (TCF	P) mg/kg dry wt	< 0.05	-	-	-	-
Tributyl Tin Trace in Soil sampl	es by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	-	-	-	0.011	-
Monobutyltin (as Sn)	mg/kg dry wt	-	-	-	0.008	-
Tributyltin (as Sn)	mg/kg dry wt	-	-	-	0.018	-
Triphenyltin (as Sn)	mg/kg dry wt	-	-	-	< 0.003	-
Total Petroleum Hydrocarbons	in Soil					
C7 - C9	mg/kg dry wt	< 10	< 8	20	< 8	< 9
C10 - C14	mg/kg dry wt	< 20	< 20	1,040	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	67,000	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70	68,000	< 70	< 70
S	Sample Name:	ETP20_0.7-0.8 21-Oct-2015 1:35 pm	ETP18_0.8-0.9 21-Oct-2015 2:40 pm	ETP09_1.1-1.2 21-Oct-2015 4:15 pm	ETP21_0.1-0.2 21-Oct-2015 11:55 am	ETP22_2.6-2.7 21-Oct-2015 11:25 am
	Lab Number:	1492225.19	1492225.23	1492225.26	1492225.28	1492225.32
Individual Tests						
Dry Matter	g/100g as rcvd	86	79	73	92	66
Heavy metals, screen As,Cd,Ci	r,Cu,Ni,Pb,Zn,Hg	•				
Total Recoverable Arsenic	mg/kg dry wt	3	7	7	18	7
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	3.8	< 0.10
Total Recoverable Chromium	mg/kg dry wt	13	24	22	22	23
Total Recoverable Copper	mg/kg dry wt	6	11	9	230	10
Total Recoverable Lead	mg/kg dry wt	12.9	27	23	650	26
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.42	< 0.10	4.3	0.15
Total Recoverable Nickel	mg/kg dry wt	8	17	16	27	17
Total Recoverable Zinc	mg/kg dry wt	45	83	80	2,500	82
Pentachlorophenol Screening in	n Soil by LCMSMS	3				
Pentachlorophenol (PCP)	mg/kg dry wt	-	< 0.05	-	-	-
2,3,4,6-Tetrachlorophenol (TCF	P) mg/kg dry wt	-	< 0.05	-	-	-
Tributyl Tin Trace in Soil sampl	es by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	-	-	< 0.005	-	-
Monobutyltin (as Sn)	mg/kg dry wt	-	-	< 0.007	-	-
Tributyltin (as Sn)	mg/kg dry wt	-	-	< 0.004	-	-
Triphenyltin (as Sn)	mg/kg dry wt	-	-	< 0.003	-	-
Total Petroleum Hydrocarbons	in Soil					
C7 - C9	mg/kg dry wt	< 8	< 9	< 9	< 8	< 10
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	970	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70	< 70	970	< 70







Analyst's Comments

^{#1} It should be noted that the replicate analyses performed on this sample as part of our in-house Quality Assurance procedures showed greater variation than would normally be expected. This may reflect the heterogeneity of the sample.

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-3, 5, 8-9, 11-12, 14, 16, 19, 23, 26, 28, 32
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-3, 5, 8-9, 11-12, 14, 16, 19, 23, 26, 28, 32
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction with sonication, dilution, analysis by LCMSMS with online SPE. Tested on dried sample	0.010 mg/kg dry wt	9, 23
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	2, 14, 26

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Total Petroleum Hydrocarbons in Soil*	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	1-3, 5, 8-9, 11-12, 14, 16, 19, 23, 26, 28, 32
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-3, 5, 8-9, 11-12, 14, 16, 19, 23, 26, 28, 32
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-3, 5, 8-9, 11-12, 14, 16, 19, 23, 26, 28, 32

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Form:

Chain of Custody & Analysis Request Form	ma Anquetil-Moran emarks & comments		
Christchurch Pro Box 710			
Christchurch 8140 Fax: 03 966 6001 Email: hannah.wright@aecom.com Email: hannah.wright@aecom			
Email:			
Lab. Ref: Lab Quote No:			
Project Name: Sample collected by: Scott McDonald Sample Results to be returned to: Hannah Wright of AECOM Consulting Services Specifications: (Tick) Analysis Request Analysis Request Analysis Request (Tick) Lurgent TAT required? (please circle: 24hr 48hrdays) Feat TAT Guarantee Required? See			
Sample collected by: Scott McDonald Sample Results to be returned to: Hannah Wright of AECOM Consulting Services CTick	emarks & comments		
Specifications: Click Special Consulting Services Click Special Consulting Services Specifications: Click Special Consulting Services Speci	emarks & comments		
1. Urgent TAT required? (please circle: 24hr 48hr	emarks & comments		
1. Urgent TAT required? (please circle: 24hr 48hr	ernarks & comments		
2. Fast TAT Guarantee Required? 3. Is any sediment layer present in waters to be excluded from extractions? Yes			
3. Is any sediment layer present in waters to be excluded from extractions? Yes			
Fax			
Fax			
ETP26_0.2-0.3 ETP26_0.8-0.9 ETP25_0.1-0.2 ETP25_0.9-1.0			
ETP26_0.2-0.3 ETP26_0.8-0.9 ETP25_0.1-0.2 ETP25_0.9-1.0			
ETP26-0.2-0.3 ETP26-0.8-0.9 ETP25-0.1-0.2 ETP25-0.9-1.0			
ETP260.2-0.3 ETP260.8-0.9 ETP250.1-0.2 ETP250.9-1.0			
ETP25_0.1-0.2 ETP25_0.1-0.2 X X X X X X X X X X X X X			
ETP25_0.1-0.2 ETP25_0.9-1.0 X			
ETP25_0.1-0.2 X X X X X X X X X X X X X X X X X X X			
ETP25-09-1.0 X			
ETP25 2.8-2.9 X			
ETP24o.2-0.3			
ETP240.7-0.8			
ETP24-2.0-2.1 X			
ETP23_0.2-0.3			
Relinquished By: Received by: Received by: Received by: Received in good Yes/No/NA Method of Shipment			
Name: Sueff McNergeld Date: 22/10 Name: Consignment Note Date: Samples received Yes/No/NA Consignment Note 22/10 chilled?	ignment Note Courier Postal By Hand		
of: AECOM Time: 3:50 of: Mill Labs Time: 15:50 Yes/No/NA Transport Co:	sport Co:		

AECOM

Form: Chain of Custody & Analysis Request Form

AECOM - Christchurch										La	orato	ry E	eta	s			Т	el:	07	858 2	2000	,		
PO Box 710					Phone	: 03 966	6119					Lab. Name: R J Hill Laboratories Ltd					Ltd Fax: 07 858 2001							
Christchurch 8140					Fax: 0	3 966 60	01					ı	Addre						Preliminary Report by:					
					Email:	hanna	h.wrial	nt@ae	com.	com			tact Na							inal F	-			/•
											-	1	Ref:							ab Qı				
Project Name:				Proje	ect Nu	mber:		60444	747	······································		Pu	rchas	e Or	der	Nur	nber	:						
Sample collected	by:	Scott McDonald	Sample Results to be returned to: Hannah Wrigh						nt of AECOM Consulting Services															
Specifications:			***************************************				/Tick)									A۱	nalys	is R	equ	est				
			(Tick)							Remarks & cor								Remarks & comments						
	olease circle: 24hr 48hr	days)							N/A															
2. Fast TAT Guarantee Re	·					Yes			No		N/A		L Z											
	esent in waters to be excluded	•			Yes		<u> </u>	No		N/A		6 <u>C</u> C												
4. Special storage requirer		☐ Yes ☐ No ☐ N/A									Ž	13	Ę		٦									
5. Preservation requirement	-	Yes No N/A							<u>s</u>	ts	snp	ں ان	၂삥	빙										
6. Other requirements?	Fax Ha	Email Yes No S. Project Manager: H Wright tel: 03							N/A	힏	S eta	밀	<u>.</u> =	5 5	2 2	8	ı							
	mail: hannah.wright@aecom.c	om	8. Project Mana	iger: H v		***************************************					03 966 6119	Cold		[<u>@</u>]	<u></u>	<u> </u>								****
Lab.	Sample ID	Sampling Date & time (on)	Sampling Date & Time (off)		Matrix		ļ		rvation		Container	용	Heavy Metals + Mercury (SCREEN)	TPH (oil Industry)	<u>ا</u> ت	PCP (TRACE		OCPs (TRACE)						
ID		tarie (Ori)	a rime (on)	soil	water	other	filt'ed	acid	ice	other	(No. & type)		<u> Ψ છ</u>	岸	<u>@</u>	ĭ ļi	- 0	ŏ			_			
	ETP23_0,8-0.9	Wil-										X												
	ETP23_1.2											X												
	ETP23-2.2-2.3											X												
	ETP08-0.2-0.3											X												
	ETP08_0.8-0.9											X												
	ETP081.8-1,9											X												
	ETP08_2.7-2.8											X												
	ETP20-0.1-0.2											X												
	ETP20_0.7-0.8											X												
	ETP20-1.4-1.5											X												
Relinquished By: Received				by:								Received in good Yes/No/NA condition?			/NA	Method of Shipment				r				
Name: Scott MCO Date: 22/16 Name:			Name:	ame: Date:							<u> </u>	ples rec	eived	7	'es/No	/NA	Cons	signment Note Courier Postal By Han			Kostal By Hand			
of: AECOM Time: 3:50 of:										- Chinida i			Ţ				ransport Co:							

AECOM

Form:

Chain of C	ustody & An	alysis F	Reques	t Fo	rm										***************************************									***	
AECOM - Christchurch	1		10.									Lak	orato	ry D	etail	S		Tel: 07 858 2000							
PO Box 710				F	Phone:	03 966 6	3119					Lab.	. Name:	F	JHill	Labor	atories	Ltd	Fax	k:	07 8	58 200	1		
Christchurch 8140				F	ax: 03	966 600)1					Lab.	. Addres	s: 1	Clyde	St, H	amilton	ı	Pre	elimin	arv F	Report I	ĎV:		
				E	mail:	<u>hannal</u>	n.wrigl	ht@ae	com.	com		Contact Name: Jean Connick								al Re			,		
					_						•	Lab.	. Ref:							Quo	•	•			
Project Name:				Projec	t Nur	nber:		604447	747			Pu	rchas	Orc	ler N	um	ber:								
Sample collected	l by:	Scott McDonal	d	Sampl	le Res	sults to	o be r	eturne	ed to:		Hannah Wrigh	nt of A	ECOM	Cons	ulting	Servi	ces								
Specifications:		(Tick)					Ana					alysis	ysis Request												
1. Urgent TAT required? (please circle: 24hr 48hr	days)						52				1											Rema	rks & co	mments
Fast TAT Guarantee Re		uuys)				Yes Yes	~	-	No No		N/A N/A		<u>~</u>												
Is any sediment layer pr	esent in waters to be excluded	from extractions?	?			Yes			No		N/A	1	ᅙ												
 Special storage requirer 	ments?					Yes			No		N/A	1	₩	_\^	2										
Preservation requirement	nts?				1	Yes			No		N/A	1	+	st.	is			ابَن							
6. Other requirements?	er requirements? Fax Hard copy ✓ Email								No		N/A	1_,	tals ([귤[밀병	빙	<u>₹</u>	3							
7. Report Format: Er	mail: hannah.wright@aecom.c	om	8. Project Mana	ger: H Wri	ight					tel:	03 966 6119	ĕ	₩ E	<u>=</u> :	5 2	8		r			İ				****
Lab.	Sample ID	Sampling Date &	Sampling Date		Matrix			Prese	rvation		Container	မြ	žπ		315	15	밁	S.							
ID	Cample ID	time (on)	& Time (off)	soil	water	other	filt'ed	acid	ice	other	(No. & type)	Hold Cold	Heavy Metals + Mercury (SCREEN)	TPH (oil Industry)	BIEA (OII INGUSTY) PCP (TRACE)	181	ONOP (TRACE)	OCPS (IRACE)							
	ETP20_2.2-2.3											X													
	ETP18-012-0,3											X								\Box	\neg				
	ETP18,.0.8-0.9											X						1		П					****
	ETP18_1.9-2.0											X						\top		П	7				
	ETP09_0.1-0.2											X						\top							
	ETP09_1.1-1.2											X						\top			7				
	ETP69_2.1-2.2											X	\top		1		\Box	T		I					
	FTF021_0.1-0,2											X			\top	<u> </u>					十	\top		***************************************	
	ETP21-0.7-0.8																	\top	1			\top			
	ETP21-1.4-1.5	***************************************									,					1		T		H					
Relinquished By: Received by:								· · · · · · · · · · · · · · · · · · ·					ived in g	ood	Ye	No/N	A N	etho	d of SI	d of Shipment					
Name: Soft M	10	Date: 22/10	Name:	Name:							condition? Date: Samples received chilled? Yes/No/NA Consider No.			-	gnment Note Courier Postal By Hand										
of: AEcan Time: 3:56 of:								Time: Yes/No/NA Transport Co:																	

AECOM Form: Chain of Custody & Analysis Request Form AECOM - Christchurch Laboratory Details 07 858 2000 PO Box 710 Phone: 03 966 6119 Lab. Name: R J Hill Laboratories Ltd 07 858 2001 Fax: Christchurch 8140 Fax: 03 966 6001 Lab. Address: 1 Clyde St, Hamilton Preliminary Report by: Email: hannah.wright@aecom.com Contact Name: Jean Connick Final Report by: Lab. Ref: Lab Quote No: Proiect Name: **Project Number:** 60444747 **Purchase Order Number:** Scott McDonald Sample collected by: Sample Results to be returned to: Hannah Wright of AECOM Consulting Services Specifications: Analysis Request (Tick) Remarks & comments . Urgent TAT required? (please circle: **对** No days) Yes N/A 2. Fast TAT Guarantee Required? Yes No N/A Heavy Metals + Mercury (SCREEN) . Is any sediment layer present in waters to be excluded from extractions? Yes No N/A BTEX (oil industry) PCP (TRACE) No N/A . Special storage requirements? Yes TPH (oil Industry) . Preservation requirements? Yes No N/A OCPs (TRACE) TBT (TRACE Fax ✓ Email Other requirements? Hard copy Yes No N/A Email: hannah.wright@aecom.com 8. Project Manager: H Wright 7. Report Format: 03 966 6119 Lab. Matrix Preservation Container Sampling Date & Sampling Date Sample ID & Time (off) time (on) ID water other filt'ed acid ice other (No. & type) ETP22-1.6-1.7 ETP22-2.6-2.7 Received in good Yes/No/NA Method of Shipment Received by: Relinquished By: condition? Courier Postal By Hand Date: Samples received Yes/No/NA Consignment Note chilled? Yes/No/NA Transport Co:

Stay .	Sennelle dame	Semilar 1946	สอกสักการ	Tasks Requested
25	ETP09_0.1-0.2 21-Oct-2015 4:10 pm	Soil	GSoll300, GSoil300	Hold Cold
26	ETP09_1.1-1.2 21-Oct-2015 4:15 pm	Soil	GSoil300, GSoil300	HOLD COLD TOH, HM+44 (Screen), TBT (
27	ETP09_2.1-2.2 21-Oct-2015 4:25 pm	Soll	GSoll300, GSoil300	Hold Cold
28	ETP21_0.1-0.2 21-Oct-2015 11:55	Soil	GSoll300, GSoll300	Hold Gold TPH, Ith tHa (screen)
29	ETP21_0.7-0.8 21-Oct-2015 12:20 pm	Soil	GSoil300, GSoil300	
30	ETP21_1.4-1.5 21-Oct-2015 12:30 pm	Soil	GSoil300, GSoil300	Hold Cold
31	ETP22_1.6-1.7 21-Oct-2015 11:10 am	Soil	GSoll300, GSoll300	Hold Cold
32	ETP22_2.6-2.7 21-Oct-2015 11;25 am	Soil	GSoil300, GSoil300	Hold Gold TPH, HM + Hg (Screen)

Received by: Emma Anquetil-Moran

R J Hill Laboratories Lin 1 Clyde Street Private Bag 3205 311492225 Hamilton 3240, New Zealand | Web

Information Summary

thije toi

Client:

AECOM Consulting Services (NZ) Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

Lab No:

Date Registered:

1492225

23-Oct-2015 9:34 am

Priority:

Normal

Quote No:

Order No: Client Reference:

60444747 60444747

Add. Client Ref:

Submitted By:

S McDonald

Charge To:

AECOM New Zealand Limited

Target Date:

28-Oct-2015 4:30 pm

25531	0.000	100
1.0	(21) ()	806

			1	P-022
No	Sample dame	Sample (yes	Continues	विवर्धक है (चेतुमा वर्ष) स्वर
1	ETP26_0.2-0.3 22-Oct-2015 12:50 pm	Soil	GSoll300, GSoil300	Holdefold TPH, HM+ Ha (screen)
2	ETP26_0.8-0.9 22-Oct-2015 1:05 pm	Soil	GSoll300, GSoll300	Hold cold TPH, HM+ Hg (Screen) Hold cold TPH, HM+ Hg (Screen), TBT (Tra
3	ETP25_0.1-0.2 22-Oct-2015 11:30 am	Soil	GSoil300, GSoil300	Hold Cold TOH, HMY Hascrace
4	ETP25_0.9-1.0 22-Oct-2015 11:45	Soil	GSoll300, GSoll300	
5	ETP25_1.8-1.9 22-Oct-2015 12:00	Soil	GSoil300, GSoil300	Hold cold TPH, HM + Ha (Screen)
6	ETP25_2.8-2.9 22-Oct-2015 12:10	Soil	GSoil300, GSoil300	Hold Cold
7	ETP24_0.2-0.3 22-Oct-2015 10:15 am	Soil	GSoil300, GSoil300	Hold Cold
8	ETP24_0.7-0.8 22-Oct-2015 10:30 am	Soil	GSoli300, GSoli300	Holdeold TPH, HM+Ha (Screen)
9	ETP24_2.0-2.1 22-Oct-2015 10:30 am	Soil	GSoil300, GSoil300	Holdesold TPH, HM+Hg (Screen) PCP (Trace)
10	ETP23_0.2-0.3 22-Oct-2015 9:00 am	Soil	GSoil300, GSoil300	Hold Cold
11	ETP23_0.8-0.9 22-Oct-2015 9:20 am	Soil	GSoil300, GSoil300	Hold Cold TPH, HM+Hg (Screen) Hold Cold TPH, HM THg (Screen)
12	ETP23_1.2 22-Oct-2015 9:30 am	Soil	GSoil300	Hold Cold TOH HW THE (SCHOOL)
13	ETP23_2.2-2.3 22-Oct-2015 9:35 am	Soil	GSoil300, GSoil300	Hold Cold
14	ETP08_0.2-0.3 22-Oct-2015 7:50	Soil	GSoll300, GSoll300	Holo Cold TPH, HM+ Hg(Seveen), TBT (vace)
15	ETP08_0.8-0.9 22-Oct-2015 8:00 am	Soil		Hold Cold
16	ETP08_1.8-1.9 22-Oct-2015 8:10 am	Soil	GSoil300, GSoil300	Hold Cold TPH, HM+ Hg (Screen)
17	ETP08_2,7-2,8 22-Oct-2015 8:20 am	Soil	GSoil300, GSoil300	
18	ETP20_0.1-0.2 21-Oct-2015 1:30 pm	Soil	GSoil300, GSoil300	Hold Cold
19	ETP20_0.7-0.8 21-Oct-2015 1:35 pm	Soil	GSoll300, GSoll300	Hold Cold TPH, HM+Hq (Sureen)
20	ETP20_1.4-1.5 21-Oct-2015 1:30 v	Soil		Hold Cold
21	ETP20_2.2-2.3 21-Oct-2015 1:48 , pm	Soil	GSoll300, GSoll300	Hold Cold
22	ETP18_0.2-0.3 21-Oct-2015 2:30 pm	Soil	GSoll300, GSoll300	Hold Cold
:3	ETP18_0.8-0.9 21-Oct-2015 2:40 / pm	Soil	GSoll300, GSoll300	Holdeold MPH, (+M+ Hy (Screen), PCP Crace)
4	ETP18-1.9-2.0 21-Oct-2015 2:50		GSoil300, GSoil300	

Lab No: 1492225 Hill Laboratories

Page 1 of 2

DATE: 4th November 2015

JOB NUMBER: J107867 (1)

AECOM NZ Ltd (Christchurch)

Level 2 2 Hazeldean Road Addington Christchurch 8024

Client Reference: 60444747

Dear Frank MacDonald,

Re: Asbestos Identification Analysis - Naval Point

Eleven (11) samples received on 23rd October 2015 by Luana Piuila-Afitu.

The results of fibre analysis were performed by Adam Maurice of Precise Consulting and Laboratory Ltd on 2nd November 2015.

The sample(s) were stated to be from Naval Point .

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with the guidelines of AS4964-2004 Method for the qualitative identification of asbestos in bulk samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Adam Maurice.

Yours sincerely

Adam Maurice

PRECISE LABORATORY IDENTIFIER

J107867 - 1 of 3

P: (03) 943 5394 W: www.preciseconsulting.co.nz

Sample Analysis Results

Job No: J107867 4 November 2015

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received" the laboratory does not take responsibility for the sampling procedure or accuracy of sample location description.

This document may not be reproduced except in full.

Identified by:

Adam Maurice Approved Identifier Reviewed by:

Adam Maurice Key Technical Person

Site Address:	Naval Point		
Sample ID	Client Sample Number	Sample Location/Description/Dimensions	Analysis Results
BS032994	ETP04_0.4- 0.6_SV	Quantitative Asbestos Non-Homogeneous Soil 402.72g	No Asbestos Detected Organic Fibre Type
BS032995	ETP07_0.3- 0.5_SV	Quantitative Asbestos Non-Homogeneous Soil 439.12g	Amosite (Brown Asbestos) Organic Fibre Type
BS032996	ETP09_0.1- 0.3_SV	Quantitative Asbestos Non-Homogeneous Soil 513.31g	Chrysotile (White Asbestos) Organic Fibre Type

J107867 - 2 of 3

Sample Analysis Results

Job No: J107867 4 November 2015

Site Address	: Naval Point		
Sample ID	Client Sample Number	Sample Location/Description/Dimensions	Analysis Results
BS032997	ETP13_0.2- 0.4_SV	Quantitative Asbestos Non-Homogeneous Soil 503.04g	No Asbestos Detected Organic Fibre Type
BS032998	ETP18_0.1- 0.3_SV	Quantitative Asbestos Non-Homogeneous Soil 458.49g	No Asbestos Detected Organic Fibre Type
BS032999	ETP19_0.2- 0.3_SV	Quantitative Asbestos Non-Homogeneous Soil 515.03g	No Asbestos Detected Organic Fibre Type
BS033000	ETP22_0.2- 0.4_SV	Quantitative Asbestos Non-Homogeneous Soil 626.40g	Chrysotile (White Asbestos) Man-Made Mineral Fibre Organic Fibre Type
BS033001	ETP22_0.6- 0.8_SV	Quantitative Asbestos Non-Homogeneous Soil 426.23g	Chrysotile (White Asbestos) Organic Fibre Type
BS033002	ETP23_0.2- 0.4_SV	Quantitative Asbestos Non-Homogeneous Soil 489.51g	Chrysotile (White Asbestos) Organic Fibre Type
BS033003	ETP22_0.5_Blk	>7mm Fragments Plaster Debris 119.16g	No Asbestos Detected Man-Made Mineral Fibre Organic Fibre Type
BS033004	ETP22_0.6- 0.8_Blk	>7mm Fragments Cement Sheet Debris 430.62g	Chrysotile (White Asbestos) Organic Fibre Type

J107867 - 3 of 3

Appendix 1: Soil Analysis Raw Data

Job No: J107867

Wednesday, 4th November 2015

	Client			Sample	Weights				Asbestos g Material CM) ¹	Asbe	Trace			
Sample ID	Sample Number	Total 10L (Kg)	Total 500mL Sub- Sample (g)	>7mm Fraction (g)	2-7mm Fraction (g)	<2mm Sub Sample (g)	<2mm Excess (g)	>7mm ACM (g)	Form & % ³	2-7mm ACM (g)	Form & % ³	<2mm ACM (g)	Form & % ³	Asbestos Detected (Y/N) ²
BS032994	ETP04_ 0.4-0.6_ SV	-	402.72	-	214.68	101.39	86.65	-	-	No Asbestos Detected	-	No Asbestos Detected	-	No
BS032995	ETP07_ 0.3-0.5_ SV	-	439.12	-	240.63	101.47	97.02	-	-	<0.001	Free Fibres 100%	<0.001	Free Fibres 100%	No
BS032996	ETP09_ 0.1-0.3_ SV	-	513.31	-	271.65	102.66	139.00	-	-	<0.001	Free Fibres 100%	No Asbestos Detected	-	No
BS032997	ETP13_ 0.2-0.4_ SV	-	503.04	-	313.22	100.60	89.22	-	-	No Asbestos Detected	-	No Asbestos Detected	-	No
BS032998	ETP18_ 0.1-0.3_ SV	-	458.49	-	259.58	100.53	98.38	-	-	No Asbestos Detected	-	No Asbestos Detected	-	No
BS032999	ETP19_ 0.2-0.3_ SV	-	515.03	-	261.81	101.43	151.79	-	-	No Asbestos Detected	-	No Asbestos Detected	-	No
BS033000	ETP22_ 0.2-0.4_ SV	-	626.40	-	277.18	103.09	246.13	-	-	<0.001	Free Fibres 100%	<0.001	Free Fibres 100%	No

Soil Appendix Version 2 | Issue Date: October 2015

Page 1 of 2

	Client			Sample	Weights				Asbestos g Material CM) ¹	Asbe	Trace			
Sample ID	Sample Number	Total 10L (Kg)	Total 500mL Sub- Sample (g)	>7mm Fraction (g)	2-7mm Fraction (g)	<2mm Sub Sample (g)	<2mm Excess (g)	>7mm ACM (g)	Form & % ³	2-7mm ACM (g)	Form & % ³	<2mm ACM (g)	Form & %³	Asbestos Detected (Y/N) ²
BS033001	ETP22_ 0.6-0.8_ SV	-	426.23	-	191.31	100.25	134.67	-	-	0.211	Cement Sheet 15%	<0.001	Free Fibres 100%	No
BS033002	ETP23_ 0.2-0.4_ SV	-	489.51	-	239.42	100.77	149.32	-	-	<0.001	Free Fibres 100%	No Asbestos Detected	-	No
BS033003	ETP22_ 0.5_Blk	-	-	119.16	-	-	-	No Asbestos Detected	-	-	-	-	-	-
BS033004	ETP22_ 0.6-0.8_ Blk	-	-	430.62	-	-	-	430.62	Cement Sheet 15%	-	-	-	-	-

¹ These results are raw weighed data presented as per the Western Australian Guidelines and may be under the reporting limit for guidelines AS4964 of 0.1g/kg

Page 2 of 2

² Trace asbestos detected is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased on site. This is not the sole indicator for the friable nature of the asbestos present.

³ Asbestos percentage is determined using EPA-600-R-93-116: Method for the Determination of Asbestos in Bulk Building Materials and are outside of IANZ accreditation #1097 and is therefore not endorsed by IANZ

Appendix G

Groundwater Analytical Result Tables

Table 12 Total Metals Groundwater Analytical Results compared to ANZECC Guidelines and ECAN Coastal Plan Limits

AECOM Location ID	TP03	TP05	TP10	TP12	TP15	TP20	TP18	TP23		
AECOM Field ID	TP03	TP05	TP10	TP12	TP15	TP20	TP18	TP23	ANZECC	ECAN Coastal
Laboratory Sample Reference	1499722.5	1500069.2	1499722.1	1499722.2	1499722.3	1499722.4	1500069.1	1499722.5		Plan
Date Sampled	11/11/2015	11/11/2015	10/11/2015	10/11/2015	10/11/2015	10/11/2015	11/11/2015	10/11/2015	1	
Observations									Level of protection - 90% Trigger values for marine water	Coastal CR Water
Metals Trace										
Total Recoverable Arsenic (g/m³)	0.036	0.058	0.00166	0.041	0.021	0.0195	0.034	0.0169	-	0.05
Total Recoverable Cadmium (g/m³)	0.0041	< 0.00021	< 0.00021	< 0.00021	0.0004	0.00027	< 0.00021	< 0.00021	0.014	0.002
Total Recoverable Chromium (g/m³)	0.0109	< 0.0011	0.002	0.038	0.026	0.004	< 0.0011	< 0.0011	0.02	0.05
Total Recoverable Copper (g/m³)	1.780	0.040	0.0143	0.025	0.038	0.021	0.0117	0.0087	0.003	0.005
Total Recoverable Lead (g/m³)	0.0115	0.0025	0.0024	0.044	0.041	0.0063	0.0025	< 0.0011	0.0066	0.005
Total Recoverable Nickel (g/m ³)	0.049	< 0.007	0.007	0.032	0.032	0.008	< 0.007	0.007	0.2	0.015
Total Recoverable Zinc (g/m³)	1.78	0.0059	< 0.0042	0.132	0.094	0.100	< 0.0042	0.0106	0.023	0.05
Tributyl Tin Trace in Soil samples by GCMS										
Dibutyltin (as Sn) (g/m ³)		< 0.00011				< 0.00011				
Tributyltin (as Sn) (g/m ³)		0.00009				< 0.00009			0.00002	
Triphenyltin (as Sn) (g/m ³)		< 0.00007				< 0.00007				

¹Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC) Ecological Level of Protection 90% Trigger values for marine water.

Bold - exceeds the Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC) Ecological Level of Protection 90% Trigger values for marine water.

Italics - exceeds the ECAN Coastal Guidelines for Class Coastal CR Water, 2011.

Table 13 Total Petroleum Hydrocarbons Groundwater Analytical Results compared to Module 5 Applicable Tier I Guidelines

AECOM

AECOM Location ID	TP05	TP03	TP10	TP12	TP15	TP18	TP20	TP23						
AECOM Field ID	TP05	TP03	TP10	TP12	TP15	TP18	TP20	TP23						
Laboratory Sample Reference	1500069.2	1500069.3	14997722.1	1499722.2	1499722.3	1500069.1	1499122.4	1499722.5						
Date Sampled	11/11/2015	11/11/2015	10/11/2015	10/11/2015	10/11/2015	11/11/2015	10/11/2015	10/11/2015	MfE 1999 Guidelines (Revised 2011): Tier 1 Groundwater	MfE 1999 Guidelines (Revised 2011): Tier 1 Groundwater Acceptance Criteria				
Observations									Acceptance Criteria - SAND ³	Sandy SILT ³				
Total Petroleum Hydrocarbons (TPH)														
C_7 - C_9 (g/m ³)	< 0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10	S ⁽¹⁾	S ⁽¹⁾				
C_{10} - C_{14} (g/m ³)	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	S ⁽¹⁾	S ⁽¹⁾				
C_{15} - C_{36} (g/m ³)	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	S ⁽¹⁾	S ⁽¹⁾				
Total hydrocarbons ($C_7 - C_{36}$) (g/m ³)	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	<0.7	< 0.7	< 0.7	-	-				
BTEX in water by headspace GC-MS														
Benzene (g/m ³)								< 0.0010	5.2	18				
Toluene (g/m ³)								< 0.0010	(460) ²	S ⁽¹⁾				
Ethylbenzene (g/m³)								< 0.0010	(110) ²	S ⁽¹⁾				
m&p-Xylene (g/m ³)								< 0.002	S ⁽¹⁾	S ⁽¹⁾				
o-Xylene (g/m ³)								< 0.0010						

AECOM Location ID	TP5	TP20	MfE 1999
AECOM Field ID	TP5	TP20	Guidelines (Revised 2011):
Laboratory Sample Reference	1500069.2	1499722.4	Tier 1
Date Sampled	11/11/2015	10/11/2015	Groundwater Acceptance Criteria1
Observations			
Polycyclic Aromatic Hydrocarbons Trace in SVOC Water Samples			
Naphthalene (g/m³)	0.0005	0.0006	22

 $^{^{1}\,\}mathrm{Calculated}$ water criteria exceeds solubility limit for pure compound in water.

Bold - exceeds the Ministry for the Environment, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) (MfE 1999 Guidelines).

² Values in brackets exceed solubility limit for compound in water when present as part of a typical gasoline mixture. Solubility is dependant upon composition of the gasoline mixture and so uncertainity arises as to the actual solubility limit of a mixture in water. For futher explanation refer to Appendix 4M of Module 4.

³ Ministry for the Environment, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) (MfE 1999 Guidelines). Module 5 - Tier 1 Groundwater Acceptance Criteria

Table 14 Detections PCP and Pesticides Groundwater Analytical Results compared to Applicable Tier I Guidelines

AECOM Location ID	TP5	TP10	TP23	TP18		
AECOM Field ID	TP5	TP10	TP23	TP18	ANZECC1	USEPA ²
Laboratory Sample Reference	1500069.2	14997722.1	1499722.5	1500069.1		
Date Sampled	11/11/2015	10/11/2015	10/11/2015	11/11/2015		
Observations					Level of protection - 90% Trigger values for marine water	Protection of Groundwater
Pentachlorophenol Trace in Water by GC-ED						
Pentachlorophenol (PCP) (g/m ³)	< 0.000010		< 0.000010	< 0.000010	0.033	
2,3,4,6-Tetrachlorophenol (TCP) (g/m ³)	< 0.000010		< 0.000010	< 0.000010		
Organochlorine Pesticides Trace in Soil						
OrganoNitrogen & Phosphorus pesticides, Trace, liq/liq GCMS						
Diuron (g/m ³)		0.00006			-	0.015

¹Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC) Ecological Level of Protection 90% Trigger values for marine water.

Bold - exceeds the Australian and New Zealand Guidelines for fresh and marine water quality (ANZECC) Ecological Level of Protection 90% Trigger values for marine water.

²USEPA Summary Regional Screening Tables, November 2015

Appendix H

Hill Laboratory Result Sheets for Groundwater

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 6

SPv2

Client: AECOM New Zealand Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

 Lab No:
 1499722

 Date Registered:
 12-Nov-2015

 Date Reported:
 01-Dec-2015

 Quote No:
 43362

Order No: 60444747

Client Reference: | 60444747 Naval Point CCC

Submitted By: H Wright

Sample Type: Saline						
S	ample Name:	TP10 10-Nov-2015	TP12 10-Nov-2015	TP15 10-Nov-2015 2:10	TP20 10-Nov-2015 3:20	TP23 10-Nov-2015
		11:25 am	12:50 pm	pm	pm	
	Lab Number:	1499722.1	1499722.2	1499722.3	1499722.4	1499722.5
Individual Tests						
Total Arsenic*	g/m³	0.0166	0.041	0.021	0.0195	0.0169
Total Cadmium*	g/m³	< 0.00021	< 0.00021	0.00040	0.00027	< 0.00021
Total Chromium*	g/m³	0.0020	0.038	0.026	0.0040	< 0.0011
Total Copper*	g/m³	0.0143	0.025	0.038	0.021	0.0087
Total Lead*	g/m³	0.0024	0.044	0.041	0.0063	< 0.0011
Total Nickel*	g/m³	0.007	0.032	0.032	0.008	0.007
Total Zinc*	g/m³	< 0.0042	0.132	0.094	0.100	0.0106
OrganoNitrogen & Phosphorus	pesticides, trace,	liq/liq GCMS				
Acetochlor*	g/m³	< 0.00004	-	< 0.00004	-	-
Alachlor*	g/m³	< 0.00004	-	< 0.00004	-	-
Atrazine*	g/m³	< 0.00004	-	< 0.00004	-	-
Atrazine-desethyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Atrazine-desisopropyl*	g/m³	< 0.00008	-	< 0.00008	-	-
Azaconazole*	g/m³	< 0.00002	-	< 0.00002	-	-
Azinphos-methyl*	g/m³	< 0.00008	-	< 0.00008	-	-
Benalaxyl*	g/m³	< 0.00002	-	< 0.00002	-	-
Bitertanol*	g/m³	< 0.00008	-	< 0.00008	-	-
Bromacil*	g/m³	< 0.00004	-	< 0.00004	-	-
Bromopropylate*	g/m³	< 0.00004	-	< 0.00004	-	-
Butachlor*	g/m³	< 0.00004	-	< 0.00004	-	-
Captan*	g/m³	< 0.00008	-	< 0.00008	-	-
Carbaryl*	g/m³	< 0.00004	-	< 0.00004	-	-
Carbofenothion*	g/m³	< 0.00004	-	< 0.00004	-	-
Carbofuran*	g/m³	< 0.00004	-	< 0.00004	-	-
Chlorfluazuron*	g/m³	< 0.00004	-	< 0.00004	-	-
Chlorothalonil*	g/m³	< 0.00004	-	< 0.00004	-	-
Chlorpyrifos*	g/m³	< 0.00004	-	< 0.00004	-	-
Chlorpyrifos-methyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Chlortoluron*	g/m³	< 0.00008	-	< 0.00008	-	-
Cyanazine*	g/m³	< 0.00004	-	< 0.00004	-	-
Cyfluthrin*	g/m³	< 0.00004	-	< 0.00004	-	-
Cyhalothrin*	g/m³	< 0.00004	-	< 0.00004	-	-
Cypermethrin*	g/m³	< 0.00008	-	< 0.00008	-	-
Deltamethrin (including Tralome		< 0.00006	-	< 0.00006	-	-
Diazinon*	g/m ³	< 0.00002	-	< 0.00002	-	-
Dichlofluanid*	g/m³	< 0.00004	-	< 0.00004	-	-
Dichloran*	g/m³	< 0.0002	-	< 0.0002	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Sample Type: Saline						
,	Sample Name:	TP10 10-Nov-2015 11:25 am	TP12 10-Nov-2015 12:50 pm		TP20 10-Nov-2015 3:20 pm	TP23 10-Nov-2015
	Lab Number:	1499722.1	1499722.2	pm 1499722.3	1499722.4	1499722.5
OrganoNitrogen & Phosphorus						
Dichlorvos*	g/m ³	< 0.00008	-	< 0.00008	-	-
Difenoconazole*	g/m³	< 0.00008	-	< 0.00008	-	-
Dimethoate*	g/m³	< 0.00008	-	< 0.00008	-	-
Diphenylamine*	g/m³	< 0.00008	-	< 0.00008	-	-
Diuron*	g/m ³	0.0006	-	< 0.00004	-	-
Fenpropimorph*	g/m ³	< 0.00004	-	< 0.00004	-	-
Fluazifop-butyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Fluometuron*	g/m³	< 0.00004	-	< 0.00004	-	-
Flusilazole*	g/m³	< 0.00004	-	< 0.00004	-	-
Fluvalinate*	g/m ³	< 0.00004	-	< 0.00004	-	-
Furalaxyl*	g/m³	< 0.00002	-	< 0.00002	-	-
Haloxyfop-methyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Hexaconazole*	g/m³	< 0.00004	-	< 0.00004	-	-
Hexazinone*	g/m ³	< 0.00002	-	< 0.00002	-	-
IPBC (3-lodo-2-propynyl-n- butylcarbamate)*	g/m³	< 0.0002	-	< 0.0002	-	-
Kresoxim-methyl*	g/m³	< 0.00002	-	< 0.00002	-	-
Linuron*	g/m³	< 0.00005	-	< 0.00005	-	-
Malathion*	g/m³	< 0.00004	-	< 0.00004	-	-
Metalaxyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Metolachlor*	g/m³	< 0.00004	-	< 0.00004	-	-
Metribuzin*	g/m³	< 0.00004	-	< 0.00004	-	-
Molinate*	g/m³	< 0.00008	-	< 0.00008	-	-
Myclobutanil*	g/m³	< 0.00004	-	< 0.00004	-	-
Naled*	g/m³	< 0.0002	-	< 0.0002	-	-
Norflurazon*	g/m³	< 0.00008	-	< 0.00008	-	-
Oxadiazon*	g/m³	< 0.00004	-	< 0.00004	-	-
Oxyfluorfen*	g/m³	< 0.00002	-	< 0.00002	-	-
Paclobutrazol*	g/m³	< 0.00004	-	< 0.00004	-	-
Parathion-ethyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Parathion-methyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Pendimethalin*	g/m³	< 0.00004	-	< 0.00004	-	-
Permethrin*	g/m³	< 0.00002	-	< 0.00002	-	-
Pirimicarb*	g/m³	< 0.00004	-	< 0.00004	-	-
Pirimiphos-methyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Prochloraz*	g/m³	< 0.0002	-	< 0.0002	-	-
Procymidone*	g/m³	< 0.00004	-	< 0.00004	-	-
Prometryn*	g/m³	< 0.00002	-	< 0.00002	-	-
Propachlor*	g/m³	< 0.00004	-	< 0.00004	-	-
Propanil*	g/m³	< 0.0002	-	< 0.0002	-	-
Propazine*	g/m³	< 0.00002	-	< 0.00002	-	-
Propiconazole*	g/m ³	< 0.00004	-	< 0.00004	-	-
Pyriproxyfen*	g/m³	< 0.00004	-	< 0.00004	-	-
Quizalofop-ethyl*	g/m³	< 0.00004	-	< 0.00004	-	-
Simazine*	g/m³	< 0.00004	-	< 0.00004	-	-
Simetryn*	g/m³	< 0.0004	-	< 0.0004	-	
Sulfentrazone* TCMTB [2-(thiocyanomethylthi benzothiazole,Busan]*	g/m ³ (o) g/m ³	< 0.0002 < 0.00008	-	< 0.0002 < 0.00008	-	-
Tebuconazole*	g/m³	< 0.00004	-	< 0.00004	-	-
Terbacil*	g/m³	< 0.00004	-	< 0.00004	-	-
Terbufos*	g/m³	< 0.00004	-	< 0.00004	-	-
Terbumeton*	g/m³	< 0.00004	-	< 0.00004	-	-
Terbuthylazine*	g/m ³	< 0.00004	-	< 0.00004	-	-
Terbuthylazine-desethyl*	g/m ³	< 0.00002	_	< 0.00004	_	

Sample Type: Saline					
Sample Name:	TP10	TP12	TP15	TP20	TP23
	10-Nov-2015	10-Nov-2015		10-Nov-2015 3:20	10-Nov-2015
Lab Number:	11:25 am 1499722.1	12:50 pm 1499722.2	pm 1499722.3	pm 1499722.4	1499722.5
OrganoNitrogen & Phosphorus pesticides, trace		1100722.2	1100122.0	1100122.1	1 1007 22.0
Terbutryn* g/m³		_	< 0.00004	-	
Thiabendazole* g/m³	< 0.0002	-	< 0.0002	-	-
Thiobencarb* g/m³	< 0.00004	-	< 0.0004	-	
Tolylfluanid* g/m³	< 0.00002	-	< 0.00002	-	
Triazophos* g/m³	< 0.00004	-	< 0.00004	-	
Trifluralin* g/m³	< 0.00004	-	< 0.00004	-	_
Vinclozolin* g/m³	< 0.00004	-	< 0.00004	-	<u>-</u>
BTEX in Water by Headspace GC-MS					
Benzene* g/m³	_	_	_	_	< 0.0010
Toluene* g/m³	_	_	_	_	< 0.0010
Ethylbenzene* g/m³	_	_	_	_	< 0.0010
m&p-Xylene* g/m³	-	-	_	-	< 0.002
o-Xylene* g/m³	-	-	_	-	< 0.0010
Organochlorine Pesticides Trace in water, By Lie	ı/Lia				. 0.0010
Aldrin* g/m ³		_	< 0.00005	_	
alpha-BHC* g/m³	< 0.000010	_	< 0.000003	_	<u>-</u>
beta-BHC* g/m³	< 0.000010	_	< 0.000010	-	<u> </u>
delta-BHC* g/m³	< 0.000010	_	< 0.000010	_	
gamma-BHC (Lindane)* g/m³	< 0.000010	-	< 0.000010	_	
cis-Chlordane* g/m³	< 0.000010	_	< 0.000010	_	
trans-Chlordane* g/m³	< 0.000005	_	< 0.000005	_	
2,4'-DDD* g/m ³	< 0.000010	_	< 0.000010	_	
Total DDT Isomers* g/m³	< 0.00006	_	< 0.00006	_	
4,4'-DDD* g/m ³	< 0.000010	_	< 0.000010	_	
2,4'-DDE* g/m ³	< 0.000010	_	< 0.000010	_	
4,4'-DDE* g/m ³	< 0.000010	_	< 0.000010	_	
2,4'-DDT* g/m³	< 0.000010	_	< 0.000010	_	
4,4'-DDT* g/m ³	< 0.000010	-	< 0.000010	-	
Dieldrin* g/m³	< 0.00005	-	< 0.00005	-	<u>-</u>
Endosulfan I* g/m³		-	< 0.000010	-	-
Endosulfan II* g/m³	< 0.000010	-	< 0.000010	-	-
Endosulfan sulfate* g/m³	< 0.000010	-	< 0.000010	-	-
Endrin* g/m³	< 0.00005	-	< 0.00005	-	-
Endrin aldehyde* g/m³	< 0.00005	-	< 0.00005	-	-
Endrin ketone* g/m³	< 0.000010	-	< 0.000010	-	-
Heptachlor* g/m³	< 0.000005	-	< 0.00005	-	-
Heptachlor epoxide* g/m³	< 0.00005	-	< 0.00005	-	-
Hexachlorobenzene* g/m³	< 0.00004	-	< 0.00004	-	-
Methoxychlor* g/m³	< 0.00005	-	< 0.00005	-	-
Total Chlordane [(cis+trans)*100/42]* g/m³	< 0.00002	-	< 0.00002	-	-
Polycyclic Aromatic Hydrocarbons Trace in Wat	er, By Liq/Liq	1	- I		
Acenaphthene* g/m³	< 0.000008	-	-	-	-
Acenaphthylene* g/m³		-	-	-	-
Anthracene* g/m³		-	-	-	-
Benzo[a]anthracene* g/m³	< 0.000008	-	-	-	-
Benzo[a]pyrene (BAP)* g/m³	< 0.000008	-	-	-	-
Benzo[b]fluoranthene + Benzo[j] g/m³ fluoranthene*	< 0.000008	-	-	-	-
Benzo[g,h,i]perylene* g/m³	< 0.000008	-	-	-	-
Benzo[k]fluoranthene* g/m³	< 0.000008	-	-	-	-
Chrysene* g/m³	< 0.000008	-	-	-	-
Dibenzo[a,h]anthracene* g/m³	< 0.000008	-	-	-	-
Fluoranthene* g/m³	< 0.000008	-	-	-	-
Fluorene* g/m³	< 0.000008	-	-	-	-

Sample Type: Saline						
	le Name:	TP10 10-Nov-2015 11:25 am	TP12 10-Nov-2015 12:50 pm	pm	TP20 10-Nov-2015 3:20 pm	TP23 10-Nov-2015
	Number:	1499722.1	1499722.2	1499722.3	1499722.4	1499722.5
Polycyclic Aromatic Hydrocarbons Tra						
Indeno(1,2,3-c,d)pyrene*	g/m³	< 0.000008	-	-	-	-
Naphthalene*	g/m³	< 0.00004	-	-	-	-
Phenanthrene*	g/m³	< 0.000008	-	-	-	-
Pyrene*	g/m³	< 0.000008	-	-	-	-
Pentachlorophenol Trace in Water by						
Pentachlorophenol (PCP)	g/m³	-	-	-	-	< 0.000010
2,3,4,6-Tetrachlorophenol (TCP)	g/m³	-	-	-	-	< 0.000010
Haloethers Trace in SVOC Water Sar	mples by G(C-MS				
Bis(2-chloroethoxy) methane*	g/m³	-	-	-	< 0.0005	-
Bis(2-chloroethyl)ether*	g/m³	-	-	-	< 0.0005	-
Bis(2-chloroisopropyl)ether*	g/m³	-	-	-	< 0.0005	-
4-Bromophenyl phenyl ether*	g/m³	-	-	-	< 0.0005	-
4-Chlorophenyl phenyl ether*	g/m³	-	-	-	< 0.0005	-
Nitrogen containing compounds Trace		Vater Samples, GC	-MS			
2,4-Dinitrotoluene*	g/m³	-	-	-	< 0.0010	-
2,6-Dinitrotoluene*	g/m³	-	-	-	< 0.0010	-
Nitrobenzene*	g/m³	-	-	-	< 0.0005	-
N-Nitrosodi-n-propylamine*	g/m³	-	-	-	< 0.0010	-
N-Nitrosodiphenylamine + Diphenylam	nine g/m3	-	-	-	< 0.0010	-
Organochlorine Pesticides Trace in S	VOC Water	Samples by GC-M	S			
Aldrin*	g/m³	-	-	-	< 0.0005	-
alpha-BHC*	g/m³	-	-	-	< 0.0005	-
beta-BHC*	g/m³	-	-	-	< 0.0005	-
delta-BHC*	g/m³	-	-	-	< 0.0005	-
gamma-BHC (Lindane)*	g/m³	-	-	-	< 0.0005	-
4,4'-DDD*	g/m³	-	-	-	< 0.0005	-
4,4'-DDE*	g/m³	-	-	-	< 0.0005	-
4,4'-DDT*	g/m³	-	-	-	< 0.0010	-
Dieldrin*	g/m³	-	-	-	< 0.0005	-
Endosulfan I*	g/m³	-	-	-	< 0.0010	-
Endosulfan II*	g/m³	-	-	-	< 0.0010	-
Endosulfan sulfate*	g/m³	-	-	-	< 0.0010	-
Endrin*	g/m³	-	-	-	< 0.0010	-
Endrin ketone*	g/m³	-	-	-	< 0.0010	-
Heptachlor*	g/m³	-	-	-	< 0.0005	-
Heptachlor epoxide*	g/m³	-	-	-	< 0.0005	-
Hexachlorobenzene*	g/m³	-	-	-	< 0.0005	-
Polycyclic Aromatic Hydrocarbons Tra		C Water Samples				
Acenaphthene*	g/m³	-	-	-	< 0.0003	-
Acenaphthylene*	g/m³	-	-	-	< 0.0003	-
Anthracene*	g/m³	-	-	-	< 0.0003	-
Benzo[a]anthracene*	g/m³	-	-	-	< 0.0003	-
Benzo[a]pyrene (BAP)*	g/m³	-	-	-	< 0.0005	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene*	g/m³	-	-	-	< 0.0005	-
Benzo[g,h,i]perylene*	g/m³	-	-	-	< 0.0005	-
Benzo[k]fluoranthene*	g/m³	-	-	-	< 0.0005	-
1&2-Chloronaphthalene	g/m³	-	-	-	< 0.0003	-
Chrysene*	g/m³	-	-	-	< 0.0003	-
Dibenzo[a,h]anthracene*	g/m³	-	-	-	< 0.0005	-
Fluoranthene*	g/m³	-	-	-	< 0.0003	-
Fluorene*	g/m³	-	-	-	< 0.0003	-
Indeno(1,2,3-c,d)pyrene*	g/m³	-	-	-	< 0.0005	-
2-Methylnaphthalene*	g/m³	-	-	-	< 0.0003	-

Sample Type: Saline						
Sample	e Name:	TP10 10-Nov-2015 11:25 am	TP12 10-Nov-2015 12:50 pm	TP15 10-Nov-2015 2:10 pm	TP20 10-Nov-2015 3:20 pm	TP23 10-Nov-2015
Lab N	Number:	1499722.1	1499722.2	1499722.3	1499722.4	1499722.5
Polycyclic Aromatic Hydrocarbons Tra		C Water Samples				
Naphthalene*	g/m³	-	-	_	0.0006	-
Phenanthrene*	g/m³	-	-	-	< 0.0003	-
Pyrene*	g/m ³	<u>-</u>	-	-	< 0.0003	-
Phenols Trace (drinkingwater) in SVO		amples by GC-MS				
2-Chlorophenol*	g/m ³	-	_	_	< 0.0005	
2,4-Dichlorophenol*	g/m³		_	_	< 0.0005	
2,4,6-Trichlorophenol*	g/m³		_	_	< 0.0010	
Phenols Trace (non-drinkingwater) in S		er Samples by GC-l	MS		< 0.0010	_
· · · · · · · · · · · · · · · · · · ·					0.0040	
4-Chloro-3-methylphenol*	g/m³	-	-	-	< 0.0010	-
2,4-Dimethylphenol*	g/m³	-	-	-	< 0.0005	-
3 & 4-Methylphenol (m- + p-cresol)*	g/m³	-	-	-	< 0.0010	-
2-Methylphenol (o-Cresol)*	g/m³	-	-	-	< 0.0005	-
2-Nitrophenol*	g/m³	-	-	-	< 0.0010	-
Pentachlorophenol (PCP)*	g/m ³	-	-	-	< 0.010	-
Phenol*	g/m³	-	-	-	< 0.0010	-
2,4,5-Trichlorophenol*	g/m³	-	-	-	< 0.0010	-
Plasticisers Trace (non-drinkingwater)	in SVOC V	Water by GCMS				
Butylbenzylphthalate*	g/m³	-	-	-	< 0.0010	-
Diethylphthalate*	g/m³	-	-	-	< 0.0010	-
Dimethylphthalate*	g/m³	-	-	-	< 0.0010	-
Di-n-butylphthalate*	g/m³	-	-	-	< 0.0010	-
Di-n-octylphthalate*	g/m³	-	-	-	< 0.0010	-
Plasticisers Trace (drinkingwater) in S	VOC Wate	r Samples by GCM	S	•		
Bis(2-ethylhexyl)phthalate*	g/m³	-	-	-	< 0.003	-
Di(2-ethylhexyl)adipate*	g/m³	-	-	-	< 0.0010	-
Other Halogenated compounds Trace	(drinkingwa	ater) in SVOC Wate	r			
1,2-Dichlorobenzene*	g/m³	-	-	-	< 0.0010	-
1,3-Dichlorobenzene*	g/m³	-	_	_	< 0.0010	-
1,4-Dichlorobenzene*	g/m³	-	-	-	< 0.0010	-
Other Halogenated compounds Trace		ngwater) in SVOC				
Hexachlorobutadiene*	g/m ³	-	_	_	< 0.0010	
Hexachloroethane*	g/m ³		_	-	< 0.0010	
1,2,4-Trichlorobenzene*	g/m ³		_	-	< 0.0005	-
Other SVOC Trace in SVOC Water S			<u> </u>		- 5.5555	
Benzyl alcohol*	g/m ³	-	_	_	< 0.005	
Carbazole*	g/m³	<u>-</u>	_	-	< 0.005	<u> </u>
Dibenzofuran*	g/m³	<u>-</u>	<u>-</u>	-	< 0.0005	-
Isophorone*	g/m³	-	<u>-</u>	-	< 0.0005	-
		<u>-</u>	-	-	< 0.0005	<u>-</u>
Tributyl Tin Trace in Water samples by	-				. 0.00044	
Dibutyltin (as Sn)*	g/m³	-	-	-	< 0.00011	-
Tributyltin (as Sn)*	g/m³	-	-	-	< 0.00009	-
Triphenyltin (as Sn)*	g/m³	-	-	-	< 0.00007	-
Total Petroleum Hydrocarbons in Water					,	
C7 - C9*	g/m³	< 0.10	< 0.10	0.11	< 0.10	< 0.10
C10 - C14*	g/m³	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
C15 - C36*	g/m³	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Total hydrocarbons (C7 - C36)*	g/m³	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7

Analyst's Comments

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Saline			
Test	Method Description	Default Detection Limit	Sample No
BTEX in Water by Headspace GC-MS*	Headspace GC-MS analysis, US EPA 8260B [KBIs:26687,3629]	0.0010 - 0.002 g/m ³	5
Organochlorine/Organonitro&phosphoru s Pest.s Trace in Water	Liquid / liquid extraction, GPC (if required), GC-MS analysis	-	1, 3
Polycyclic Aromatic Hydrocarbons Trace in Water, By Liq/Liq*	Liquid / liquid extraction, SPE (if required), GC-MS SIM analysis [KBIs:4736,2695]	0.000005 g/m ³	1
Pentachlorophenol Trace in Water by GC-ECD	Solvent extraction, acetylation, GC-ECD analysis	0.000010 g/m ³	5
Semivolatile Organic Compounds Trace in Water by GC-MS	Liquid/Liquid extraction, GPC cleanup (if required), GC-MS FS analysis	-	4
Tributyl Tin Trace in Water samples by GCMS*	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis	0.00003 - 0.00005 g/m ³	4
Total Petroleum Hydrocarbons in Water*	Hexane extraction, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:2803,10734]	0.10 - 0.7 g/m ³	1-5
Total Digestion of Saline Samples*	Nitric acid digestion. APHA 3030 E 22nd ed. 2012 (modified).	-	1-5
Total Arsenic*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0042 g/m ³	1-5
Total Cadmium*	Nitric acid digestion, ICP-MS, ultratrace level. APHA 3125 B 22 nd ed. 2012.	0.00021 g/m ³	1-5
Total Chromium*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-5
Total Copper*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-5
Total Lead*	Nitric acid digestion, ICP-MS, ultratrace level. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-5
Total Nickel*	Nitric acid digestion, ICP-MS with universal cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-5
Total Zinc*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0042 g/m ³	1-5

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

AECOM

CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

	FROM:		TO:			400000000		ANTADAMAN.		ANAL	YSES REQ	UIRED		11000	distraction is	A CONTROL OF THE	
AECOM Ltd Road, 8140	Level 2, 2 Hazeldean Addington, Christchurch	Hill Laboratory			CONTAINERS												
Project Name: Naval Point		Client: CCC			<u> </u>			<u> </u>		8							
RESULTS ATTENTION: Hannah Wri	ght			Normal Priority	† "	(N)	REEN		Θ	3T and							
PROJECT NO::00444747 PURCHASE ORDER NO: SAMPLER(S): Alan Spooner		LAB QUOTE NO:		High Priority Urgent Priority Special Quote	ANALYTES	TPH (SCREEN)	Heavy metals (SCREEN)	PCP	ONOP (TRACE)	SVOC including TBT	втех	РАН					
		RESULTS REQUIRED BY:				1	Hea			Š							
SAMPLE ID	MATRIX	DATE/TIME	COM	MENTS						, o						ļ	
TP10 TP12 TP15	Groundwater Groundwater	10/11/15					V		V			V			ļ	-	
TP15	Groundwater	10/11/15	ine Dub of	TPL	_	1	1	 	1							1	
TP20 TP23	Groundwater	10/11/15	111- 200 00	,,,,,				 		~							
TP23	Groundwater	10/0/15				1	1										
	Groundwater	101.113				<u> </u>											
	Groundwater					1										Ì	
	Groundwater																
	Groundwater																
	Groundwater							<u> </u>									
	Groundwater																
	Groundwater							<u> </u>									
	Groundwater					<u> </u>		<u>]</u>		<u></u>	<u> </u>						
Total No.	of Sample Bottles:			Professional of the Control of the C		uding:	0.0000000000000000000000000000000000000	azaron et il propedistriba	ton da daolara conde	oobselfer on him over the	SAN LANGUAGE WAS SAN FOR AN	age or Charles See for Selection and See	Annual Management	Blank or Dupl	icate Sampl	es	NA COLONIA DANS A
		RELINQUISHED BY		Ų.	HAIN OF CUS				DECE	VED BY	2F40949055996		-	7-4	X 23.00 (198.00)	ETHOD OF SHIPME	MT.
NAME: 1/4 5	900NJ	METHODISED B1	DATE: 11/11/15		NAME:		gldev .				***************************************	DATE:			1	URS RECEPTION	
NAME: AGOM Ltd	2007 6		TIME:		COMPANY:		MINTA !	hil la	h٢			TIME:				HILLS DOCKET	
COM TO THE PERSON OF THE PERSO				S THIS SECTION (CIRCLE AS AP	SAMPLE REC					ES)					•		
ALL SAM	IPLES AND ASSOCIATED DOCUMENTATION			YES / N	0		PLEASE C	ONTACT THE L	ABORATORY		CUSTODY SEAL SAMPLES CHILLE	D: NTCH NO:	2012(20), 2027(20), 202		NO / NA NO / NA	Temp;	Charles and the Charles and th
	SPECIAL HANDLING/STO	JKAGE OR DISPOSAL I	NSTRUCTIONS:			-				Mathematical Indianasia	REPORTING LETTER	.34,000,000,000,000,000	EMAIL	2	DISK		
	CAUTION - SAMPLES MAY	CONTAIN HAZARDOU	S SUBSTANCES		REPORT FORM				FAX		CEITER		ENVIL.	~ 교	UIDA	'	
					EMAIL ADDRESS	:: nannar	n.wright@	yaecom.	com	01111105::		01/0:41/5:	NIPAVI IST	O. (*****	■ groowinger/es	≃≡	Receive
								INTERNAL	USE - AEC	UM WORK	INSTRUCTI	UNS AND	HECKLIST	OVERLEA	r	= 3 •	= ĕ
																9	= 3

149 9722

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 3

SPv2

Client: AECOM New Zealand Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

 Lab No:
 1500069

 Date Registered:
 12-Nov-2015

 Date Reported:
 30-Nov-2015

Quote No:

Order No: 60444747

Client Reference: 60444747 Naval Point CCC

Submitted By: H Wright

Sample Type: Saline						
Sample N	ame:	TP18 11-Nov-2015 11:09 am	TP05 11-Nov-2015 12:30 pm	TP03 11-Nov-2015 2:20 pm		
Lab Nur	nher:	1500069.1	1500069.2	1500069.3		
Individual Tests	iiboi.	.00000	.00000.2	.00000010		
Total Arsenic*	g/m³	0.034	0.058	0.036	-	_
Total Cadmium*	g/m ³	< 0.00021	< 0.00021	0.0041	-	-
Total Chromium*	g/m ³	< 0.0011	< 0.0011	0.0109	-	-
Total Copper*	g/m ³	0.0117	0.040	1.78	-	-
Total Lead*	g/m ³	0.0025	0.0025	0.0115	-	-
Total Nickel*	g/m ³	< 0.007	< 0.007	0.049	-	-
Total Zinc*	g/m ³	< 0.0042	0.0059	1.78	-	-
Pentachlorophenol Trace in Water by GC						
Pentachlorophenol (PCP)	g/m³	< 0.000010	< 0.000010	_		_
2,3,4,6-Tetrachlorophenol (TCP)	g/m³	< 0.000010	< 0.000010	_	<u> </u>	_
Haloethers Trace in SVOC Water Sample			< 0.000010			
Bis(2-chloroethoxy) methane*	g/m ³	-	< 0.0005	_	-	_
Bis(2-chloroethyl)ether*	g/m³	-	< 0.0005	-	-	-
Bis(2-chloroisopropyl)ether*	g/m³	-	< 0.0005	-	-	-
4-Bromophenyl phenyl ether*	g/m ³	-	< 0.0005	-	<u> </u>	-
	g/m³	-	< 0.0005	-	-	-
4-Chlorophenyl phenyl ether*		Notes Comples CC		-	<u> </u>	-
Nitrogen containing compounds Trace in		-				T
2,4-Dinitrotoluene*	g/m³	-	< 0.0010	-	-	-
2,6-Dinitrotoluene*	g/m³	-	< 0.0010	-	-	-
Nitrobenzene*	g/m³	-	< 0.0005	-	-	-
N-Nitrosodi-n-propylamine*	g/m³	-	< 0.0010	-	-	-
N-Nitrosodiphenylamine + Diphenylamine		-	< 0.0010	-	-	-
Organochlorine Pesticides Trace in SVO		Samples by GC-M				1
Aldrin*	g/m³	-	< 0.0005	-	-	-
alpha-BHC*	g/m³	-	< 0.0005	-	-	-
beta-BHC*	g/m³	-	< 0.0005	-	-	-
delta-BHC*	g/m³	-	< 0.0005	-	-	-
gamma-BHC (Lindane)*	g/m³	-	< 0.0005	-	-	-
4,4'-DDD*	g/m³	-	< 0.0005	-	-	-
4,4'-DDE*	g/m³	-	< 0.0005	-	-	-
4,4'-DDT*	g/m³	-	< 0.0010	-	-	-
Dieldrin*	g/m³	-	< 0.0005	-	-	-
Endosulfan I*	g/m³	-	< 0.0010	-	-	-
Endosulfan II*	g/m³	-	< 0.0010	-	-	-
Endosulfan sulfate*	g/m³	-	< 0.0010	-	-	-
Endrin*	g/m³	-	< 0.0010	-	-	-

Sample Type: Saline						
Sampl	e Name:	TP18 11-Nov-2015 11:09 am	TP05 11-Nov-2015 12:30 pm	TP03 11-Nov-2015 2:20 pm		
Lab I	Number:	1500069.1	1500069.2	1500069.3		
Organochlorine Pesticides Trace in S'	VOC Water	Samples by GC-M	S			
Endrin ketone*	g/m³	-	< 0.0010	-	-	-
Heptachlor*	g/m³	-	< 0.0005	-	-	-
Heptachlor epoxide*	g/m³	-	< 0.0005	-	-	-
Hexachlorobenzene*	g/m³	-	< 0.0005	-	-	-
Polycyclic Aromatic Hydrocarbons Tra	ace in SVO	C Water Samples				
Acenaphthene*	g/m³	<u> </u>	< 0.0003	-	-	-
Acenaphthylene*	g/m³	-	< 0.0003	-	-	-
Anthracene*	g/m³	-	< 0.0003	-	-	-
Benzo[a]anthracene*	g/m ³	-	< 0.0003	-	-	-
Benzo[a]pyrene (BAP)*	g/m³	-	< 0.0005	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene*	g/m ³	-	< 0.0005	-	-	-
Benzo[g,h,i]perylene*	g/m³	-	< 0.0005	-	-	-
Benzo[k]fluoranthene*	g/m³	-	< 0.0005	-	-	-
1&2-Chloronaphthalene	g/m³	-	< 0.0003	_		-
Chrysene*	g/m³		< 0.0003	_		-
Dibenzo[a,h]anthracene*	g/m³	-	< 0.0005	_		-
Fluoranthene*	g/m ³	-	< 0.0003	_		-
Fluorene*	g/m ³	-	< 0.0003	_		_
Indeno(1,2,3-c,d)pyrene*	g/m ³		< 0.0005	_		_
2-Methylnaphthalene*	g/m³		< 0.0003	_		_
Naphthalene*	g/m³		0.0005	_		_
Phenanthrene*	g/m³		< 0.0003	_		_
Pyrene*	g/m³		< 0.0003	_		-
Phenols Trace (drinkingwater) in SVC		amples by GC-MS	< 0.0000			
2-Chlorophenol*	g/m³	-	< 0.0005	-		-
2,4-Dichlorophenol*	g/m³	-	< 0.0005	-	-	-
2,4,6-Trichlorophenol*	g/m³	-	< 0.0010	-	-	-
Phenols Trace (non-drinkingwater) in		er Samples by GC-	MS			
4-Chloro-3-methylphenol*	g/m³		< 0.0010	_		_
2,4-Dimethylphenol*	g/m ³	-	< 0.0005	-	-	-
3 & 4-Methylphenol (m- + p-cresol)*	g/m³	-	< 0.0010	-	-	-
2-Methylphenol (o-Cresol)*	g/m ³		< 0.0005	_		_
2-Nitrophenol*	g/m³		< 0.0010	_		_
Pentachlorophenol (PCP)*	g/m ³		< 0.010	_		_
Phenol*	g/m³		< 0.0010	_		_
2,4,5-Trichlorophenol*	g/m³	-	< 0.0010	-	<u>-</u>	-
Plasticisers Trace (non-drinkingwater)		Vater by GCMS				
Butylbenzylphthalate*	g/m ³		< 0.0010	_	-	_
Diethylphthalate*	g/m³		< 0.0010	-	<u> </u>	-
Dimethylphthalate*	g/m³	-	< 0.0010	-	<u>-</u>	-
Di-n-butylphthalate*	g/m³	<u>-</u>	< 0.0010	-	<u>-</u>	-
	g/m³	-	< 0.0010	-	-	-
Di-n-octylphthalate*		r Comples by COM		-	<u>-</u>	_
Plasticisers Trace (drinkingwater) in S Bis(2-ethylhexyl)phthalate*	g/m ³	- samples by GCM	< 0.003			_
Di(2-ethylhexyl)adipate*	g/m³		< 0.003	-	<u> </u>	-
Other Halogenated compounds Trace		eter) in SVOC Water		_	-	
		alei) iii SVOC Wate	T.			
1,2-Dichlorobenzene*	g/m³	-	< 0.0010	-	-	-
1,3-Dichlorobenzene*	g/m³	-	< 0.0010	-	-	-
1,4-Dichlorobenzene*	g/m³	-	< 0.0010	-	-	-
Other Halogenated compounds Trace		ngwater) in SVOC				
Hexachlorobutadiene*	g/m³	-	< 0.0010	-	-	-
Hexachloroethane*	g/m³	-	< 0.0010	-	-	-
1,2,4-Trichlorobenzene*	g/m³	-	< 0.0005	-	-	-

Sample Type: Saline						
S	Sample Name:	TP18	TP05	TP03		
	•	11-Nov-2015	11-Nov-2015	11-Nov-2015 2:20		
		11:09 am	12:30 pm	pm		
	Lab Number:	1500069.1	1500069.2	1500069.3		
Other SVOC Trace in SVOC V	Vater Samples by	GC-MS				
Benzyl alcohol*	g/m³	-	< 0.005	-	-	-
Carbazole*	g/m³	-	< 0.0005	-	-	-
Dibenzofuran*	g/m³	-	< 0.0005	-	-	-
Isophorone*	g/m³	-	< 0.0005	-	-	-
Tributyl Tin Trace in Water san	nples by GCMS					
Dibutyltin (as Sn)*	g/m³	-	< 0.00011	-	-	-
Tributyltin (as Sn)*	g/m³	-	0.00009	-	-	-
Triphenyltin (as Sn)*	g/m³	-	< 0.00007	-	-	-
Total Petroleum Hydrocarbons	in Water					
C7 - C9*	g/m³	< 0.10	< 0.10	< 0.10	-	-
C10 - C14*	g/m³	< 0.2	< 0.2	< 0.2	-	-
C15 - C36*	g/m³	< 0.4	< 0.4	< 0.4	-	-
Total hydrocarbons (C7 - C36)*	g/m³	< 0.7	< 0.7	< 0.7	-	-

Analyst's Comments

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Saline			
Test	Method Description	Default Detection Limit	Sample No
Pentachlorophenol Trace in Water by GC-ECD	Solvent extraction, acetylation, GC-ECD analysis	0.000010 g/m ³	1-2
Semivolatile Organic Compounds Trace in Water by GC-MS	Liquid/Liquid extraction, GPC cleanup (if required), GC-MS FS analysis	-	2
Tributyl Tin Trace in Water samples by GCMS*	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis	0.00003 - 0.00005 g/m ³	2
Total Petroleum Hydrocarbons in Water*	Hexane extraction, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:2803,10734]	0.10 - 0.7 g/m ³	1-3
Total Digestion of Saline Samples*	Nitric acid digestion. APHA 3030 E 22nd ed. 2012 (modified).	-	1-3
Total Arsenic*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0042 g/m ³	1-3
Total Cadmium*	Nitric acid digestion, ICP-MS, ultratrace level. APHA 3125 B 22 nd ed. 2012.	0.00021 g/m ³	1-3
Total Chromium*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-3
Total Copper*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-3
Total Lead*	Nitric acid digestion, ICP-MS, ultratrace level. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-3
Total Nickel*	Nitric acid digestion, ICP-MS with universal cell, ultratrace. APHA 3125 B 22 nd ed. 2012.	0.0011 g/m ³	1-3
Total Zinc*	Nitric acid digestion, ICP-MS with dynamic reaction cell, ultratrace. APHA 3125 B 22nd ed. 2012.	0.0042 g/m ³	1-3

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Lab No: 1500069 v 2 Hill Laboratories Page 3 of 3

AECOM

CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

	ROM:		TO:		a Savaralia					ANAL	YSES REQ	JIRED			144.5	
AECOM Ltd Road, 8140	Level 2, 2 Hazeldean Addington, Christchurch	Hill Laboratory		CONTAINERS									-			
Project Name: Naval Point Client: C		Client: CCC	A CONTROL OF THE PARTY OF THE P		- 8											
RESULTS ATTENTION: Hannah Wrigi	ht			Normal Priority	-	2	REEN.)		(iii	T and O						
PROJECT NO:60444747 PURCHASE ORDER NO:		LAB QUOTE NO:	(ligh Priority Jrgent Priority	ANALYTES	TPH (SCREEN)	Heavy metals (SCREEN)	PCP	ONÓP (TRACE)	SVOC including TBT and OC	втех	РАН				
SAMPLER(S): Alan Spooner		RESULTS REQUIRED BY:	Amended to the short of the transfer of the control of the state of th	pecial Quote	¥	1PH	leavy me		ONO	ONO VOC incl						
SAMPLE ID	MATRIX	DATE/TIME	СОМИ	ENTS	ii ii					S						
TP18	Groundwater	11/11/15	Saline			~	~	٠,٠/								
TPOS	Groundwater	11/11/15	il			./_	~	<u> </u>		·/						
TP03	Groundwater	11/11/15	11			·/				ļ						
	Groundwater															
	Groundwater															
	Groundwater				_											
· · · · · · · · · · · · · · · · · · ·	Groundwater									ļ						
	Groundwater															
	Groundwater					-		<u> </u>		ļ						
	Groundwater				_				ļ							
	Groundwater					ļ		ļ		<u> </u>						
	Groundwater							<u> </u>		ļ						
	Groundwater	ļ			 	<u> </u>		l	<u> </u>	<u> </u>	L			N1 D		
i otal No. ot	Sample Bottles:	1	our and the state of the state		HAIN OF CUS	uding:	ADDATES ASSESSED VALUE OF THE	one before a transcerio	o a samutou pillato Peninsa	louf-Acolea, presentataria	papel lefter (Centre Al Ma)	and an editional electrical	etworklingstein bewere to	Blank or Dupi	icate Sample	S concessorations (IV) and contrast to
		DELINATION OF		, ,	HAIN UF CUS	IODY DATA			pror	4.ED.DV	San College		1200			
NAME: Ambel	twi	REUNOUISHED BY	DATE: //////		NAME:	************		****************	RECE	IVED BY		DATE;				THOD OF SHIPMENT URS RECEPTION
COMPANY: AECOM Ltd	1 W 1)		TIME:		COMPANY:	-		na desire de la		***************		TIME:	***************			HILLS DOCKET
COMPANT, ACCOM Ltu					SAMPLE REC					F6)						THE DOUBLE
ALL SAMP	PLEASE COMPLETE THIS SECTION (CIRCLE AS A ALL SAMPLES AND ASSOCIATED DOCUMENTATION WERE RECEIVED IN GOOD ORDER YES / 1			YES / N	Date A Charles (D. Steiner)		delita in an annual service	ONTACT THE LA	harden valleted vag		CUSTODY SEAL I SAMPLES CHILLE LABORATORY BA	D: TCH NO;	YES / NO / NA YES / NO / NA Temp:			
	SPECIAL HANDLING/STO	RAGE OR DISPOSAL I	NSTRUCTIONS:								REPORTING					
	CAUTION - SAMPLES MAY	CONTAIN HAZARDOU	S SUBSTANCES		REPORT FORMA				FAX		LETTER		EMAIL	7	DISK	
					EMAIL ADDRESS	hannah	.wright@	aecom.	com							ω <u>=</u>
					INTERNAL USE - AECOM WORK INSTRUCTIONS AND CHECKLIST OVERLEAF											

5

150 0069

Received by: Elyce Skinner

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

1501457

17-Nov-2015

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 3

SPv1

Client:

AECOM Consulting Services (NZ) Limited

Contact: H Wright

C/- AECOM Consulting Services (NZ) Limited

PO Box 4479

CHRISTCHURCH 8051

Lab No: Date Registered: Date Reported: Quote No:

Date Reported: 23-Nov-2015 Quote No: 60444747

Order No: 60444747
Client Reference: Naval Point
Submitted By: Alan Spooner

Sample Type: Saline Sample Name: TP12	
16-Nov-2015	
10:54 am	
Lab Number: 1501457.1	
OrganoNitrogen & Phosphorus pesticides, trace, liq/liq GCMS	
Acetochlor g/m ³ < 0.00004	-
Alachlor g/m ³ < 0.00004	-
Atrazine g/m^3 < 0.00004	-
Atrazine-desethyl g/m³ < 0.00004	-
Atrazine-desisopropyl g/m³ < 0.00008	-
Azaconazole g/m³ < 0.00002	-
Azinphos-methyl g/m^3 < 0.00008	-
Benalaxyl g/m³ < 0.00002	-
Bitertanol g/m³ < 0.00008	-
Bromacil g/m³ < 0.00004	-
Bromopropylate g/m³ < 0.00004	-
Butachlor g/m³ < 0.00004	-
Captan g/m³ < 0.00008	-
Carbaryl g/m³ < 0.00004	-
Carbofenothion g/m^3 < 0.00004	-
Carbofuran g/m³ < 0.00004	-
Chlorfluazuron g/m³ < 0.00004	-
Chlorothalonil g/m³ < 0.00004	-
Chlorpyrifos g/m³ < 0.00004	-
Chlorpyrifos-methyl g/m³ < 0.00004	-
Chlortoluron g/m³ < 0.00008	-
Cyanazine g/m³ < 0.00004	-
Cyfluthrin g/m³ < 0.00004	-
Cyhalothrin g/m³ < 0.00004	-
Cypermethrin g/m³ < 0.00008	-
Deltamethrin (including Tralomethrin) g/m³ < 0.00006	-
Diazinon g/m³ < 0.00002	-
Dichlofluanid g/m³ < 0.00004	-
Dichloran g/m³ < 0.0002	-
Dichlorvos g/m³ < 0.00008	-
Difenoconazole g/m³ < 0.00008	-
Dimethoate g/m³ < 0.00008	-
Diphenylamine g/m³ < 0.00008	-
Diuron g/m³ < 0.00004	-
Fenpropimorph g/m³ < 0.00004	-
Fluazifop-butyl g/m^3 < 0.00004	-
Fluometuron g/m³ < 0.00004	-
Flusilazole g/m³ < 0.00004	-
Fluvalinate g/m³ < 0.00004	-

Sample Type: Saline						
	Sample Name:	TP12				
	-	16-Nov-2015				
	Lab Number:	10:54 am 1501457.1				
OrganoNitrogen & Phosphorus						
Furalaxyl	g/m ³	< 0.00002	_	_	_	_
Haloxyfop-methyl	g/m³	< 0.00002	_	-	-	_
Hexaconazole	g/m³	< 0.00004	-	-	-	-
Hexazinone	g/m³	< 0.00004	-	-	-	_
IPBC (3-lodo-2-propynyl-n-	g/m³	< 0.0002	-	-	-	-
butylcarbamate)	9/111-	< 0.0002	-	-	-	-
Kresoxim-methyl	g/m³	< 0.00002	-	-	-	-
Linuron	g/m³	< 0.00005	-	-	-	-
Malathion	g/m³	< 0.00004	-	-	-	-
Metalaxyl	g/m³	< 0.00004	-	-	-	-
Metolachlor	g/m³	< 0.00004	-	-	-	-
Metribuzin	g/m³	< 0.00004	-	-	-	-
Molinate	g/m³	< 0.00008	-	-	-	-
Myclobutanil	g/m³	< 0.00004	-	-	-	-
Naled	g/m³	< 0.0002	-	-	-	-
Norflurazon	g/m³	< 0.00008	-	-	-	-
Oxadiazon	g/m³	< 0.00004	-	-	-	-
Oxyfluorfen	g/m³	< 0.00002	-	-	-	-
Paclobutrazol	g/m³	< 0.00004	-	-	-	-
Parathion-ethyl	g/m³	< 0.00004	-	-	-	-
Parathion-methyl	g/m³	< 0.00004	-	-	-	-
Pendimethalin	g/m³	< 0.00004	-	-	-	-
Permethrin	g/m³	< 0.00002	-	-	-	-
Pirimicarb	g/m ³	< 0.00004	-	-	-	-
Pirimiphos-methyl	g/m³	< 0.00004	-	-	-	-
Prochloraz	g/m³	< 0.0002	-	-	-	-
Procymidone	g/m³	< 0.00004	-	-	-	-
Prometryn	g/m³	< 0.00002	-	-	-	-
Propachlor	g/m³	< 0.00004	-	-	-	-
Propanil	g/m³	< 0.0002	-	-	-	-
Propazine	g/m³	< 0.00002	-	-	-	-
Propiconazole	g/m³	< 0.00004	-	-	-	-
Pyriproxyfen	g/m³	< 0.00004	-	-	-	-
Quizalofop-ethyl	g/m³	< 0.00004	-	-	-	-
Simazine	g/m³	< 0.00004	-	-	-	-
Simetryn	g/m³	< 0.00004	-	-	-	-
Sulfentrazone	g/m³	< 0.0002	-	-	-	-
TCMTB [2-(thiocyanomethylthiobenzothiazole,Busan]	o) g/m ³	< 0.00008	-	-	-	-
Tebuconazole	g/m³	< 0.00004	-	-	-	-
Terbacil	g/m ³	< 0.00004	-	-	-	-
Terbufos	g/m³	< 0.00004	-	-	-	-
Terbumeton	g/m³	< 0.00004	-	-	-	-
Terbuthylazine	g/m³	< 0.00002	-	-	-	-
Terbuthylazine-desethyl	g/m³	< 0.00004	-	-	-	-
Terbutryn	g/m³	< 0.00004	-	-	-	-
Thiabendazole	g/m³	< 0.0002	-	-	-	-
Thiobencarb	g/m³	< 0.00004	-	-	-	-
Tolylfluanid	g/m³	< 0.00002	-	-	-	-
Triazophos	g/m³	< 0.00004	-	-	-	-
Trifluralin	g/m³	< 0.00004	-	-	-	-
Vinclozolin	g/m³	< 0.00004	-	-	-	-
Organochlorine Pesticides Tra	ce in water, By Liq	/Liq				
Aldrin	g/m³	< 0.000005	-	-	-	-
alpha-BHC	g/m³	< 0.000010	-	-	-	-
Lab No. 1501457 v 1			Laboratorios			Dogo 2 of 2

Sample Type: Saline						
	Sample Name:	TP12				
		16-Nov-2015				
	1 -1 511	10:54 am 1501457.1				
Onne a chloria a Dantini dea Ta	Lab Number:					
Organochlorine Pesticides Tra			1			1
beta-BHC	g/m³	< 0.000010	-	-	-	-
delta-BHC	g/m³	< 0.000010	-	-	-	-
gamma-BHC (Lindane)	g/m³	< 0.000010	-	-	-	-
cis-Chlordane	g/m³	< 0.000005	-	-	-	-
trans-Chlordane	g/m³	< 0.000005	-	-	-	-
2,4'-DDD	g/m³	< 0.000010	-	-	-	-
Total DDT Isomers	g/m³	< 0.00006	-	-	-	-
4,4'-DDD	g/m³	< 0.000010	-	-	-	-
2,4'-DDE	g/m³	< 0.000010	-	-	-	-
4,4'-DDE	g/m³	< 0.000010	-	-	-	-
2,4'-DDT	g/m³	< 0.000010	-	-	-	-
4,4'-DDT	g/m³	< 0.000010	-	-	-	-
Dieldrin	g/m³	< 0.000005	-	-	-	-
Endosulfan I	g/m³	< 0.000010	-	-	-	-
Endosulfan II	g/m³	< 0.000010	-	-	-	-
Endosulfan sulfate	g/m³	< 0.000010	-	-	-	-
Endrin	g/m³	< 0.000005	-	-	-	-
Endrin aldehyde	g/m³	< 0.000005	-	-	-	-
Endrin ketone	g/m³	< 0.000010	-	-	-	-
Heptachlor	g/m³	< 0.000005	-	-	-	-
Heptachlor epoxide	g/m³	< 0.000005	-	-	-	-
Hexachlorobenzene	g/m³	< 0.00004	-	-	-	-
Methoxychlor	g/m³	< 0.000005	-	-	-	-
Total Chlordane [(cis+trans)*1	00/42] g/m ³	< 0.00002				

Analyst's Comments

Appendix No.1 - Chain of Custody

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Saline			
Test	Method Description	Default Detection Limit	Sample No
Organochlorine/Organonitro&phosphoru s Pest.s Trace in Water	Liquid / liquid extraction, GPC (if required), GC-MS analysis	-	1

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

AECOM

CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

	ROM:		TO:		5 - FORLES- PATA BASS 10												
AECOM Ltd		ANALYSES REQUIRED															
Road, 3140 Project Name: Naval Point	Addington, Christchurch	Hill Laboratory Client: CCC			CONTAINERS												
		Cheff. CCC													5		
ESULTS ATTENTION: Hannah Wrigh	t				-		(Si			and OC							
OJECT NO:60444747		LAB QUOTE NO:		Normal Priority High Priority	ES	EEN)	SCRE		ACE)	TBT ar							
IRCHASE ORDER NO: WPLER(S): Alan Spooner				Urgent Priority	ANALYTES	TPH (SCREEN)	Heavy metals (SCREEN)	PCP	ONOP (TRACE)	uding	BTEX	РАН					
		RESULTS REQUIRED BY:	published to the state of the s	Special Quote	< <	₫	m yw		ONC	C incl							
SAMPLEID	MATRIX	DATE/TIME	CON	MENTS	1		Ĕ			, Q							ĺ
TPIZ	Groundwater	1610115	5<11		 					· · ·							i
	Groundwater				 	 			~								
	Groundwater					 											
	Groundwater										ļ						
	Groundwater			·····													
	Groundwater																
	Groundwater																
	Groundwater																
	Groundwater																
	Groundwater																
	Groundwater																
	Groundwater																
Total No. of S	Groundwater										-						
College Colleg	ample Bottles;		***		Inclu	ding;					<u> </u>			<u>. </u>			
4	- R	ELINQUISHED BY	100	CH.	AIN OF CUS	TODY DATA							- t	Blank or Dupil	cate Samp	ies	Jane Company
AME: +ML/ DMPANY: AECOM Ltd	MJJ		DATE: { \ / \ / \ TIME:	No. opening opening to the second control of the second control opening of the second control op	COMPANY:	WY) (JV 0	L Cal	dev	RECEIVE HTT C	169		DATE; TIME:	20	-8		METHOD OF SHIPMEN URS RECEPTION	п
			PLEASE COMPLETE	SA THIS SECTION (CIRCLE AS APPE	MPLE RECE	EPT DATA	BY III IF DIA YES									HILLS DOCKET	
ALL SAMPLES	S AND ASSOCIATED DOCUMENTATION V	WERE RECEIVED IN GOOD O		YES / NO	i	, ne tolle 4 co		TACT THE LA			CUSTODY SEAL INTACT;			YES / N			
SPECIAL HANDLING/STORAGE OR DISPOSAL INSTRUCTIONS:			İ						LABORATORY BAT		1	YES / N	J / NA	NA Temp:			
	CAUTION - SAMPLES MAY C		The second second second second		REPORT FORMAT	:			·ax	4795	REPORTING		2757.53		12.50	17	15
			DODS I MITUES		EMAII ADDRESS:	hannah	wright@a			Ц	LETTER		EMAIL		DISK	ω==	Tecelve:
				ļ	27-001-03	Maria II.	······································	TERMAN !	OFFICE							15	≘∣ë
					- H			, LANAL U	SE - AECUI	M WORK I	VSTRUCTIO	NS AND C	HECKLIST	OVERLEAF	80777000		副

Job No: Date Recv: 16-Nov-15 12:1