Christchurch City Council

Jecks Place Housing Complex PRO 0702

Detailed Engineering Evaluation Quantitative Assessment Report

Christchurch City Council

Jecks Place Housing Complex

Quantitative **Assessment Report**

4-70 Jecks Place, Dallington,

Prepared By

Rebecca Ford

Engineering Assistant

Lachlan Howat

Reviewed By

Structural Engineer

Approved for Release By

Mary Ann Halliday Senior Structural Engineer

Opus International Consultants Ltd Christchurch Office 20 Moorhouse Avenue PO Box 1482, Christchurch Mail Centre, Christchurch 8140 New Zealand

Telephone: Facsimile:

+64 3 363 5400 +64 3 365 7858

Date: Reference: Status:

February 2014 6-QC363.00 Final

Summary

Jecks Place Housing Complex PRO 0702

Detailed Engineering Evaluation Quantitative Report - Summary Final

Background

This is a summary of the quantitative report for the Jecks Place Housing Complex, and is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. This assessment covers the 52 residential units and the Residents Lounge on the site.

Key Damage Observed

The residential units have suffered minor to moderate damage to non-structural elements. This included cracking of the brick veneer cladding. There is also moderate cracking to the concrete foundation perimeter footing (render and concrete) in most residential unit blocks. This damage was deemed low enough to not affect the capacities of the buildings. Minor damage to structural elements included minor cracking of plasterboard linings.

The Residents Lounge has suffered very minor damage to non-structural elements. This involved a loose brick in the veneer and a single observed crack of the internal plasterboard cladding.

Level Survey

All accessible floor slopes were assessed in a laser level survey. A total of nine units (over 4 blocks) had floor slopes greater than the 5mm/m limitation set out in the MBIE guidelines [6], as shown below.

Internal Lining Nail Spacings

The internal lining nail spacings were measured on site to vary between 150-400mm.

Critical Structural Weaknesses

No critical structural weaknesses were found in any of the buildings.

Indicative Building Strength

Table A: Summary of Seismic Performance by Blocks

Block	NBS%	Indicative Floor Levels	Nail Spacings
PRO 0702 B001 (Block A)	58%	Pass	Pass
PRO 0702 B002 (Residents Lounge)	100%	Pass	Pass
PRO 0702 B003 (Block B)	58%	Pass	Pass
PRO 0702 B004 (Block C)	58%	Fail	Pass
PRO 0702 B005 (Block D)	58%	Pass	Pass
PRO 0702 B006 (Block E)	58%	Pass	Pass
PRO 0702 B007 (Block F)	58%	Pass	Pass
PRO 0702 B008 (Block G)	58%	Pass	Pass
PRO 0702 B009 (Block H)	58%	Fail	Pass
PRO 0702 B010 (Block I)	58%	Pass	Pass
PRO 0702 B011 (Block J)	58%	Fail	Pass
PRO 0702 B012 (Block K)	58%	Fail	Pass

No buildings on the site are considered to be earthquake prone.

The residential units have capacities of 58% NBS as limited by the in-plane shear capacity of the timber-framed shear walls in the longitudinal direction. They are deemed to be a 'moderate risk' in a design seismic event according to NZSEE guidelines.

The residents lounge has a capacity of 100% NBS as limited by the in-plane shear capacity of the timber-framed shear walls in the longitudinal direction. It is deemed to be a 'low risk' in a design seismic event according to NZSEE guidelines.

Increasing the number of nails in the plasterboard will not significantly improve the strength of the buildings.

Recommendations

It is recommended that;

- Strengthening schemes be developed to increase seismic capacity of Blocks A K to 67%NBS.
- Veneer at height (gable ends) have the veneer ties checked.
- Work to permanently stabilize the gable end veneer of Block I be undertaken.
- The concrete perimeter footings be repaired on blocks where cracking occurs.
- The porch at Unit 44 be repaired to cover exposed reinforcing.
- Cosmetic repairs be undertaken as required.

Contents

Sum	imaryi
1	Introduction5
2	Compliance5
3	Earthquake Resistance Standards9
4	Background Information11
5	Damage 18
6	Detailed Seismic Assessment19
7	Geotechnical Summary 22
8	Conclusions 22
9	Recommendations23
10	Limitations23
11	References 24
Арр	endix A – Photographs

Appendix B – Methodology and Assumptions

Appendix C – Level Survey

Appendix D – CERA DEE Spreadsheet

1 Introduction

Opus International Consultants Limited has been engaged by Christchurch City Council to undertake a detailed seismic assessment of the Jecks Place Housing Complex, located at 4-70 Jecks Place, Dallington, following the Canterbury earthquake sequence since September 2010. The site was visited by Opus International Consultants on 19 November 2013.

The purpose of the assessment is to determine if the buildings in the complex are classed as being earthquake prone in accordance with the Building Act 2004.

The seismic assessment and reporting have been undertaken based on the qualitative and quantitative procedures detailed in the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) [2] [3] [4] [5].

2 Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

2.1 Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 – Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 – Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee to carry out a full structural survey before the building is re-occupied.

We understand that CERA require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). CERA have adopted the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) on 19 July 2011. This document sets out a methodology for both initial qualitative and detailed quantitative assessments.

It is anticipated that a number of factors, including the following, will determine the extent of evaluation and strengthening level required:

- 1. The importance level and occupancy of the building.
- 2. The placard status and amount of damage.

- 3. The age and structural type of the building.
- 4. Consideration of any critical structural weaknesses.

Christchurch City Council requires any building with a capacity of less than 34% of New Building Standard (including consideration of critical structural weaknesses) to be strengthened to a target of 67% as required under the CCC Earthquake Prone Building Policy.

2.2 Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to the alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

The Earthquake Prone Building policy for the territorial authority shall apply as outlined in Section 2.3 of this report.

Section 115 – Change of Use

This section requires that the territorial authority is satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'.

This is typically interpreted by territorial authorities as being 67% of the strength of an equivalent new building or as near as practicable. This is also the minimum level recommended by the New Zealand Society for Earthquake Engineering (NZSEE).

Section 121 – Dangerous Buildings

This section was extended by the Canterbury Earthquake (Building Act) Order 2010, and defines a building as dangerous if:

- 1. In the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- 2. In the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- 3. There is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- 4. There is a risk that other property could collapse or otherwise cause injury or death; or
- 5. A territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 – Earthquake Prone Buildings

This section defines a building as earthquake prone (EPB) if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property.

A moderate earthquake is defined by the building regulations as one that would generate loads 33% of those used to design an equivalent new building.

Section 124 – Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 - Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

2.3 Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in October 2011 following the Darfield Earthquake on 4 September 2010.

The policy includes the following:

- 1. A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;
- 2. A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- 3. A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- 4. Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

Where an application for a change of use of a building is made to Council, the building will be required to be strengthened to 67% of New Building Standard or as near as is reasonably practicable.

2.4 Building Code

The Building Code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

On 19 May 2011, Compliance Document B1: Structure, was amended to include increased seismic design requirements for Canterbury as follows:

- Increase in the basic seismic design load for the Canterbury earthquake region (Z factor increased to 0.3 equating to an increase of 36 47% depending on location within the region);
- Increased serviceability requirements.

2.5 Institution of Professional Engineers New Zealand (IPENZ) Code of Ethics

One of the core ethical values of professional engineers in New Zealand is the protection of life and safeguarding of people. The IPENZ Code of Ethics requires that:

Members shall recognise the need to protect life and to safeguard people, and in their engineering activities shall act to address this need.

- 1.1 Giving Priority to the safety and well-being of the community and having regard to this principle in assessing obligations to clients, employers and colleagues.
- 1.2 Ensuring that responsible steps are taken to minimise the risk of loss of life, injury or suffering which may result from your engineering activities, either directly or indirectly.

All recommendations on building occupancy and access must be made with these fundamental obligations in mind.

3 Earthquake Resistance Standards

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The loadings are in accordance with the current earthquake loading standard NZS1170.5 [1].

A generally accepted classification of earthquake risk for existing buildings in terms of %NBS that has been proposed by the NZSEE 2006 [2] is presented in Figure 1 below.

Description	Grade	Risk	%NBS	Existing Building Structural Performance		Improvement of Struc	tural Performance
					-►	Legal Requirement	NZSEE Recommendation
Low Risk Building	A or B	Low	Above 67	Acceptable (improvement may be desirable)		The Building Act sets no required level of structural improvement (unless change in use)	100%NBSdesirable.Improvementshouldachieve at least 67%NBS
Moderate Risk Building	B or C	Moderate	34 to 66	Acceptable legally. Improvement recommended		This is for each TA to decide. Improvement is not limited to 34%NBS.	Not recommended. Acceptable only in exceptional circumstances
High Risk Building	D or E	High	33 or lower	Unacceptable (Improvement required under Act)		Unacceptable	Unacceptable

Figure 1: NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE Guidelines [2]

Table 1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% risk of exceedance in 50 years (i.e. 0.2% in the next year).

	to relative risk of failure
Percentage of New Building	Relative Risk (Approximate)
Standard (%NBS)	
> 100	at times
>100	<1 time
80-100	1-2 times
67.80	o = times
67-80	2-5 times
33-67	5-10 times
	0
00.00	10-25 times
20-33	10-25 times
<20	>25 times
	5

Table 1: %NBS compared to relative risk of failure

3.1 Minimum and Recommended Standards

Based on governing policy and recent observations, Opus makes the following general recommendations:

3.1.1 Occupancy

The Canterbury Earthquake Order¹ in Council 16 September 2010, modified the meaning of "dangerous building" to include buildings that were identified as being EPB's. As a result of this, we would expect such a building would be issued with a Section 124 notice, by the Territorial Authority, or CERA acting on their behalf, once they are made aware of our assessment. Based on information received from CERA to date and from the MBIE guidance document dated December 2012 [6], this notice is likely to prohibit occupancy of the building (or parts thereof), until its seismic capacity is improved to the point that it is no longer considered an EPB.

3.1.2 Cordoning

Where there is an overhead falling hazard, or potential collapse hazard of the building, the areas of concern should be cordoned off in accordance with current CERA/territorial authority guidelines.

3.1.3 Strengthening

Industry guidelines (NZSEE 2006 [2]) strongly recommend that every effort be made to achieve improvement to at least 67%NBS. A strengthening solution to anything less than 67%NBS would not provide an adequate reduction to the level of risk.

It should be noted that full compliance with the current building code requires building strength of 100%NBS.

3.1.4 Our Ethical Obligation

In accordance with the IPENZ code of ethics, we have a duty of care to the public. This obligation requires us to identify and inform CERA of potentially dangerous buildings; this would include earthquake prone buildings.

¹ This Order only applies to buildings within the Christchurch City, Selwyn District and Waimakariri District Councils authority.

4 Background Information

4.1 Building Descriptions

The site contains 52 residential units which were constructed in 1964. It is unknown when the Residents Lounge was constructed but it is believed to be after the units. A site plan showing the location of the units is shown in Figure 2. Figure 3 shows the location of the site in Christchurch City. The units are grouped together to form 11 blocks of either four or six units.

Units are numbered such that eastern units have even numbers and western units have odd numbers. The east group contains four more units than the west group, thus the evens run from 4 to 70 skipping 12, 14, 28, 42, 52, and 62, and the odds run from 5 to 59 skipping 13, 23, 37, and 51.

Figure 2: Site plan of Jecks Place Housing Complex.

Figure 3: Location of Jecks Place (circled) relative to Christchurch City CBD (Source: Google Earth).

The residential units are timber-framed buildings with diagonal timber braces. The roof structure comprises of timber roof framing supporting light-weight metal roofs with timber sarking. Units A, C, E, F, I and K have gable-end roofs while units B, D, G, H and J have hip roofs. The walls and ceilings are lined with plasterboard. External walls are clad with Summerhill Stone (Blocks A, B, C, I, J, and K) and brick veneer (Blocks D, E, F, G and H). The timber floors are supported by concrete piles with a concrete perimeter wall. It is assumed, based on other similar buildings of the same era that the units are separated by 190mm block masonry fire walls which are reinforced around their perimeter.

All units originally had fireplaces, however these have all been boarded up and the chimneys have been taken down to below roof height.

Units 29 and 31 have been combined to created office space for Richmond New Zealand Trust Ltd. These units have no chimney between them; they instead have an open doorway. All other features of the layout are the same.

Figure 4 shows a typical floor plan of a residential unit produced from site measurements by Opus (actual arrangement may differ). Figure 5 shows a comparable cross section used in calculations, from Mabel Howard Housing Complex.

The Residents' Lounge is a timber-framed building with diagonal timber braces. The roof structure comprises of timber framing supporting a light-weight metal roof. The walls and ceiling are lined with plasterboard. External walls are clad with brick veneer. The foundation consists of strip footings around the perimeter of a reinforced concrete slab. Figure 6 shows a floor plan of the Residents Lounge produced from site measurements by Opus.

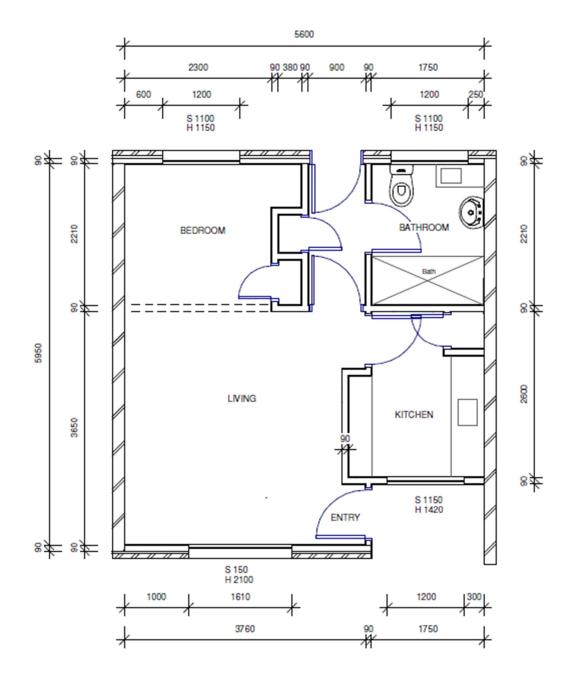


Figure 4: Typical partial floor plan of residential unit blocks.

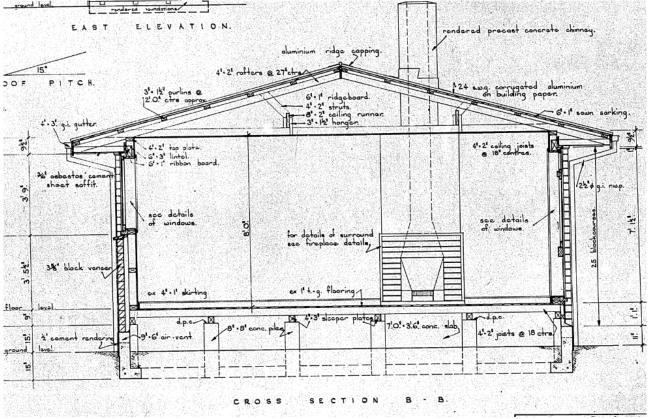


Figure 5: Comparable cross section of Jecks Place (from Mabel Howard Housing Complex).

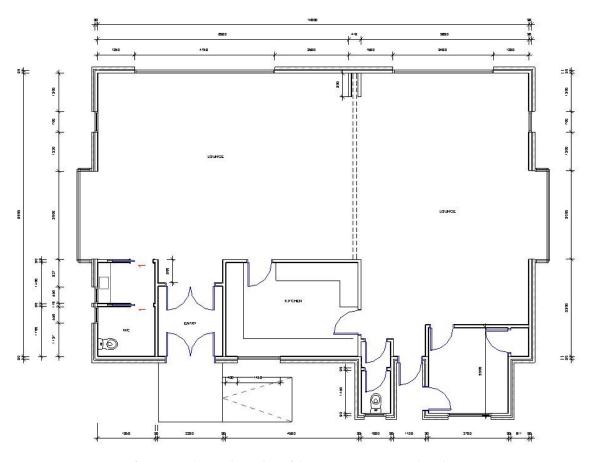


Figure 6: Floor plan of Residents Lounge at Jecks Place.

4.2 Survey

4.2.1 Post 22 February 2011 Rapid Assessment

A structural (Level 2) assessment of the buildings/property was undertaken on 8 March 2011 by Opus International Consultants.

4.2.2 Level Survey

A full level survey was not deemed to be necessary at Jecks Place as it is located in a TC2 zone. Properties in TC2 zones suffered minor to moderate damage due to liquefaction and/or settlement. In lieu of a full level survey, a laser level was placed in each unit so that differentials in vertical levels could be measured at the extreme ends of the unit. These values could then be used to determine the floor slope of the entire unit. For this site, the maximum slope in a unit was 8mm/m (which exceeds the 5mm/m limitation imposed by MBIE guidelines); the general slopes across all units were approximately 4mm/m.

It is noted that most of the failed floor slopes were in the halls of the units, where the floor rose towards the back door. This slope was observed even in units where the slope was measured to be less than the limitation.

The results of the level survey can be found in Appendix C. A summary is shown in Table 2.

Table 2: Summary of the Level Survey					
Block	Unit No.	Comment	Maximum Fall*		
	5	Pass	-		
А	7	Pass	-		
A	9	Pass	-		
	11	Pass	-		
	15	Pass	-		
В	17	Pass	-		
D	19	Pass	-		
	21	Pass	-		
	25	Pass	-		
	27	Pass	-		
С	29	Pass	-		
C	31	Pass	-		
	33	Fail	6mm/m		
	35	Pass	-		
	39	Pass	-		
	41	Pass	-		
D	43	Pass	-		
D	45	Pass	-		
	47	Pass	-		
	49	Pass	-		
	53	Pass	-		
Е	55	Pass	-		
Ľ	57	Pass	-		
	59	Pass	-		
	64	Pass	-		
F	66	Pass	-		
1	68	Pass	-		
	70	Pass	-		
	54	Pass	-		
G	56	Pass	-		
U	58	Pass	-		
	60	Pass	-		
	44	Fail	8mm/m		
Н	46	Pass	-		
11	48	Pass	-		
	50	Pass	-		
	30	Pass	-		
	32	Pass	-		
Ι	34	Pass	-		
L L	36	Pass	-		
	38	Pass	-		
	40	Pass	-		

Table 2: Summary of the Level Survey

	16	Fail	7mm/m
	18	Pass	-
	20	Fail	8mm/m
J	22	Fail	6mm/m
	24	Not assessed	-
	26	Fail	6mm/m
	4	Fail	7mm/m
К	6	Pass	-
K	8	Fail	8mm/m
	10	Fail	7mm/m
Residents Lounge		Pass	-

* Values are only recorded if greater than 5mm/m

Orange results represent floor levels which fall outside the MBIE guidelines when using the laser level but may comply when surveyed using more accurate equipment.

4.2.3 Nail Spacings

The internal lining nail spacings were measured on site to vary between 150-400mm.

4.3 Original Documentation

The following documentation was provided to Opus by the Christchurch City Council:

- A147/1 Christchurch City Council Jecks Place Pensioners Cottages p. 1-3/3 Plans, elevations, details 1962-1964
- 166/1 Christchurch City Council Dunarnan Street Pensioners Cottages p. 1/1 Site plan – 1961

Note that the drawings were renamed as Jecks Place (rather than Dunarnan Street) after design.

In addition, a typical floor plan has been produced by Opus to help confirm as-built measurements.

The drawings were used to confirm the structural systems, investigate potential critical structural weaknesses (CSW) and identify details which required particular attention.

Copies of the design calculations were not provided. Documentation on the Residents Lounge was not provided.

5 Damage

This section outlines the damage to the buildings that was observed during site visits. It is not intended to be a complete summary of the damage sustained by the buildings due to the earthquakes. Some forms of damage may not be able to be identified with a visual inspection only.

Note: Any photo referenced in this section can be found in Appendix A.

5.1 Residual Displacements

Minor land movement was observed in many of the units and the Residents Lounge. It was noted that there was evidence of land damage in garden plots and on the driveways (photos 17 and 18). As can be seen from the results of the level survey Blocks K and J were most affected by this residual displacement.

5.2 Foundations

Cracking of the strip footing was observed. This ranged from hairline cracks in the render on the perimeter walls to significant cracks approximately 7mm wide extending through the concrete (photos 19-23). Cracking was typically observed around grates and pipes. In some cases this connected to stepped cracking in the veneer (see section 5.5). The piles themselves could not be checked for damage as there was no subfloor access.

5.3 Primary Gravity Structure

No damage was evident in the timber framing or roof structure.

5.4 Primary Lateral-Resistance Structure

Cracking to the plasterboard ceiling diaphragm was observed in almost all units. This was characteristically a lateral crack running over the division between the living and bedroom areas (photo 24). Another typical crack was a lateral crack running though the living room from the corner of the chimney (photo 25). In some cases these lateral ceiling cracks have been plastered over (photo 26), although this damage was still noticeable.

5.5 Non Structural Elements

In addition to characteristic cracking described in section 5.4, a variety of other cracks were observed. This was predominately separation cracking around walls, ceilings and joinery (photos 27-29) and some walls. There was also short lateral and vertical cracking from the corners of doorways and windows in a number of units (photos 30-31).

Damage to external cladding was also observed on many units. A number of units showed stepped cracking in the veneer (photo 32). Loose bricks were observed in the gable ends of most units (photo 33). It was noted that the veneer on the north gable end of Block I has been temporarily braced (photo 34).

In the same manner as cracking of the foundations, cracking of the front porches was observed. This was predominately hairline cracking but was extensive in places (photos 35-36). Significant damage was observed on the front porch of Unit 44 (photo 37), to the extent

that metal reinforcing was exposed. Some cracking to the back steps was also noted. It should be noted that it is believed the back steps were poured at the same time as the foundations as there is no cold joint.

The only observable damage in the Residents Lounge was a vertical crack in the plasterboard lining extending from the centre beam in the main room (photo 39) and a loose brick in the veneer in the North West corner (photo 40).

5.6 General Observations

The buildings appeared to have performed reasonably well, as would be expected for buildings of this type, during the earthquakes. They have suffered distributed amounts of minor to moderate damage which is typical of the type and age of construction and consistent with the heavy nature of the cladding.

6 Detailed Seismic Assessment

The detailed seismic assessment has been based on the NZSEE 2006 [2] guidelines for the "Assessment and Improvement of the Structural Performance of Buildings in Earthquakes" together with the "Guidance on Detailed Engineering Evaluation of Earthquake Affected Non-residential Buildings in Canterbury, Part 2 Evaluation Procedure" [3] draft document prepared by the Engineering Advisory Group on 19 July 2011, and the SESOC guidelines "Practice Note – Design of Conventional Structural Systems Following Canterbury Earthquakes" [5] issued on 21 December 2011.

As the residential units have the same floor plan, the analysis was simplified by conducting the analysis of one multi-unit block with similar cladding and using this for all multi-unit blocks.

6.1 Critical Structural Weaknesses

The term Critical Structural Weakness (CSW) refers to a component of a building that could contribute to increased levels of damage or cause premature collapse of a building.

No CSWs were identified in the buildings.

6.2 Quantitative Assessment Methodology

The assessment assumptions and methodology have been included in Appendix B. A brief summary follows:

Hand calculations were performed to determine seismic forces from the current building codes. These forces were applied globally to the structure and the capacities of the walls were calculated and used to estimate the %NBS. The walls, highlighted in Figure 7 and Figure 8, were used for bracing in their respective directions.

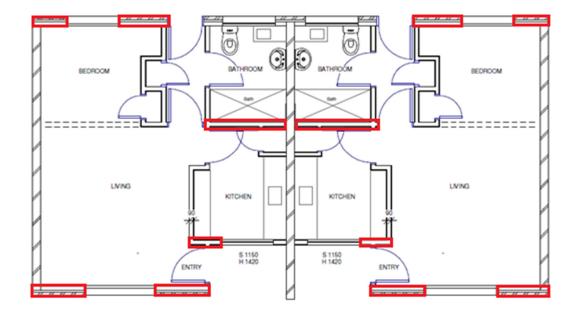


Figure 7: Walls used for bracing in the longitudinal direction.

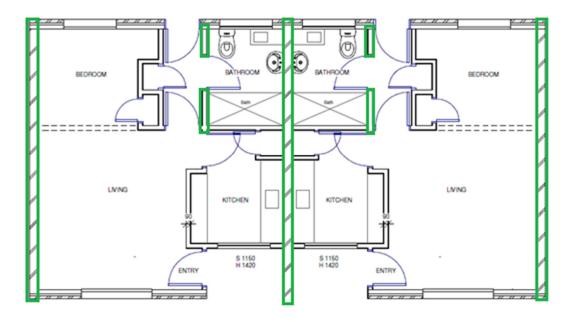


Figure 8: Walls used for bracing in the transverse direction.

6.3 Limitations and Assumptions in Results

The observed level of damage suffered by the buildings was deemed low enough to not affect their capacity. Therefore the analysis and assessment of the buildings was based on them being in an undamaged state. There may have been damage to the buildings that was unable to be observed that could cause the capacity of the buildings to be reduced; therefore the current capacity of the buildings may be lower than that stated.

The results have been reported as a %NBS and the stated value is that obtained from our analysis and assessment. Despite the use of best national and international practice in this

analysis and assessment, this value contains uncertainty due to the many assumptions and simplifications which are made during the assessment. These include:

- Simplifications made in the analysis, including boundary conditions such as foundation fixity.
- Assessments of material strengths based on limited drawings, specifications and site inspections.
- The normal variation in material properties which change from batch to batch.
- Approximations made in the assessment of the capacity of each element, especially when considering the post-yield behaviour.
- Construction is consistent with normal practise of the era in which constructed.

6.4 Assessment

A summary of the structural performance of the buildings is shown in Table 3. Note that the values given represent the worst performing elements in the building, where these effectively define the building's capacity. Other elements within the building may have significantly greater capacity when compared with the governing elements.

Building Description	Critical element	% NBS based on calculated capacity in longitudinal direction	% NBS based on calculated capacity in transverse direction.
All units (Blocks A – K)	Timber bracing in the longitudinal direction	58%	100%
Residents Lounge	Timber bracing walls in the longitudinal direction	100%	100%

Table 3: Summary of Seismic Performance

7 Geotechnical Summary

CERA indicates that Jecks Place is located in a TC2 zone (as shown in Figure 9). This classification suggests future significant earthquakes will cause minor to moderate land damage due to liquefaction and settlement.



Figure 9: CERA Technical Categories map (loc. starred).

There is no evidence to suggest that further geotechnical investigation is warranted for this site.

8 Conclusions

- None of the buildings on site are considered to be Earthquake Prone.
- The residential units (Blocks A K) have capacities of 58% NBS, as limited by the in-plane capacity of the bracing walls. They are deemed to be a 'moderate risk' in a design seismic event according to NZSEE guidelines. Their level of risk is 5-10 times that of a 100% NBS building (Figure 1).
- The Residents Lounge has a capacity of 100% NBS, as limited by the in-plane capacity of the bracing walls. It is deemed to be a 'low risk' in a design seismic event according to NZSEE guidelines.
- Based on the geotechnical appraisal, differential settlement as a result of liquefaction could result in further damage, similar in nature to that which has occurred in the recent earthquake sequence. However, based on the nature of construction, this is unlikely to result in the collapse of concrete ground beams beneath the masonry walls.

9 Recommendations

It is recommended that;

- Strengthening schemes be developed to increase seismic capacity of Blocks A K to 67%NBS.
- Veneer at height (gable ends) have the veneer ties checked.
- Work to permanently stabilize the gable end veneer of Block I be undertaken.
- The concrete perimeter footings be repaired on blocks where cracking occurs.
- The porch at Unit 44 be repaired to cover exposed reinforcing.
- Cosmetic repairs be undertaken as required.

10 Limitations

- This report is based on an inspection of the buildings and focuses on the structural damage resulting from the Canterbury Earthquake sequence since September 2010. Some non-structural damage may be described but this is not intended to be a complete list of damage to non-structural items.
- Our professional services are performed using a degree of care and skill normally exercised, under similar circumstances, by reputable consultants practicing in this field at this time.
- This report is prepared for the Christchurch City Council to assist in the assessment of any remedial works required for the Jecks Place Housing Complex. It is not intended for any other party or purpose.

11 References

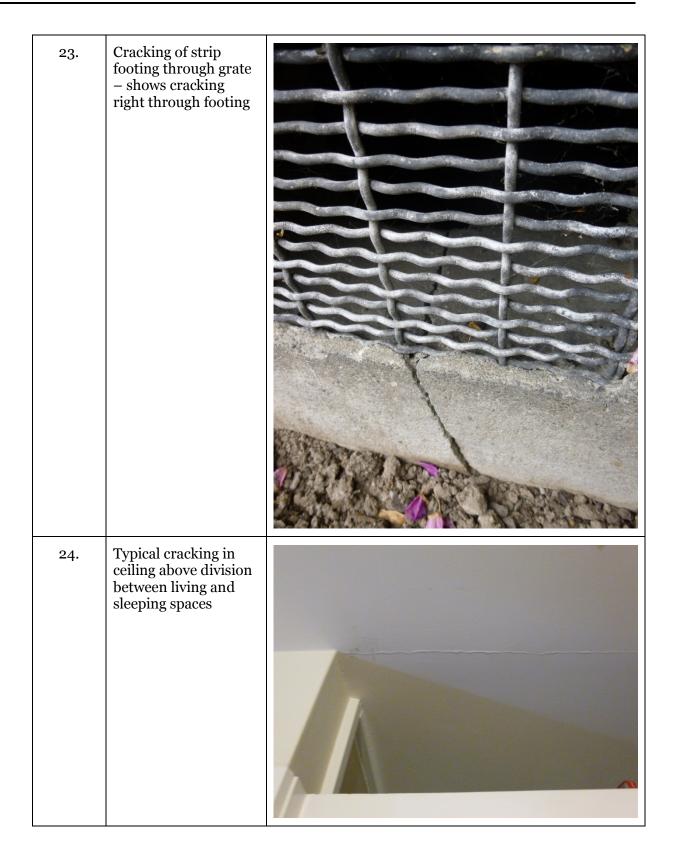
- [1] NZS 1170.5: 2004, Structural design actions, Part 5 Earthquake actions, Standards New Zealand.
- [2] NZSEE (2006), Assessment and improvement of the structural performance of buildings in earthquakes, New Zealand Society for Earthquake Engineering.
- [3] Engineering Advisory Group, Guidance on Detailed Engineering Evaluation of Earthquake Affected Non-residential Buildings in Canterbury, Part 2 Evaluation Procedure, Draft Prepared by the Engineering Advisory Group, Revision 5, 19 July 2011.
- [4] Engineering Advisory Group, *Guidance on Detailed Engineering Evaluation of Nonresidential buildings, Part 3 Technical Guidance*, Draft Prepared by the Engineering Advisory Group, 13 December 2011.
- [5] SESOC (2011), Practice Note Design of Conventional Structural Systems Following Canterbury Earthquakes, Structural Engineering Society of New Zealand, 21 December 2011.
- [6] MBIE (2012), Repairing and rebuilding houses affected by the Canterbury earthquakes, Ministry of Building, Innovation and Employment, December 2012.

Appendix A – Photographs

Jecks	Jecks Place Housing Complex		
No.	Item description	Photo	
Resid	ential Units Layout		
1.	Typical exterior elevation (front)		
2.	Typical exterior elevation (end)		

3.	Typical exterior elevation (back)	
4.	Typical layout of living room and sleeping area	
5.	Typical layout of living room toward kitchen	

6.	Typical layout of hall	
7.	Typical layout of bathroom	


8.	Typical layout of kitchen	
Residents	Lounge Layout	
9.	Residents Lounge exterior elevation (front)	
10.	Residents Lounge exterior elevation (east)	

11.	Residents Lounge exterior elevation (back)	<image/>
12.	Residents Lounge exterior elevation (west)	
13.	Entrance to Residents Lounge	

14.	Internal layout of Residents Lounge (west side)	
15.	Internal layout of Residents Lounge (east side)	
16.	Layout of kitchen in Residents Lounge	

Damage			
17.	Land damage in garden plots		
18.	Land damage creating swelling and large crack in road		
19.	Typical hairline cracking of strip footing		

20.	Lateral cracking in strip footing	
21.	Typical medium cracking of strip footing	a diz dibiosi dei dei dei dei dei dei dei dei dei de
22.	Typical significant cracking of strip footing	

25.	Typical cracking in	
	Typical cracking in ceiling above living room, running from corner of chimney	
	corner of chimney	
26.	Attempted repair to ceiling crack	
		(C)
		T KASSET
27.	Typical separation cracking in corners	

28.	Typical separation cracking between ceiling and walls	
29.	Typical cracking above doorways and windows	
30.	Typical lateral cracking from doorways and windows	

31.	Typical vertical cracking above doorways and windows	
32.	Typical step cracking in veneer	
33.	Typical loose brick in gable end	

34.	Veneer bracing at end of Block I	
35.	Typical hairline cracking on porches.	
36.	Lateral cracking on porches	

37.	Extensive cracking in porch (Unit 44)	
38.	Chipping of back steps	

	1	
39.	Internal cracking in Residents Lounge	
40.	Loose brick in veneer of Residents Lounge (north-west corner)	

Appendix B – Methodology and Assumptions

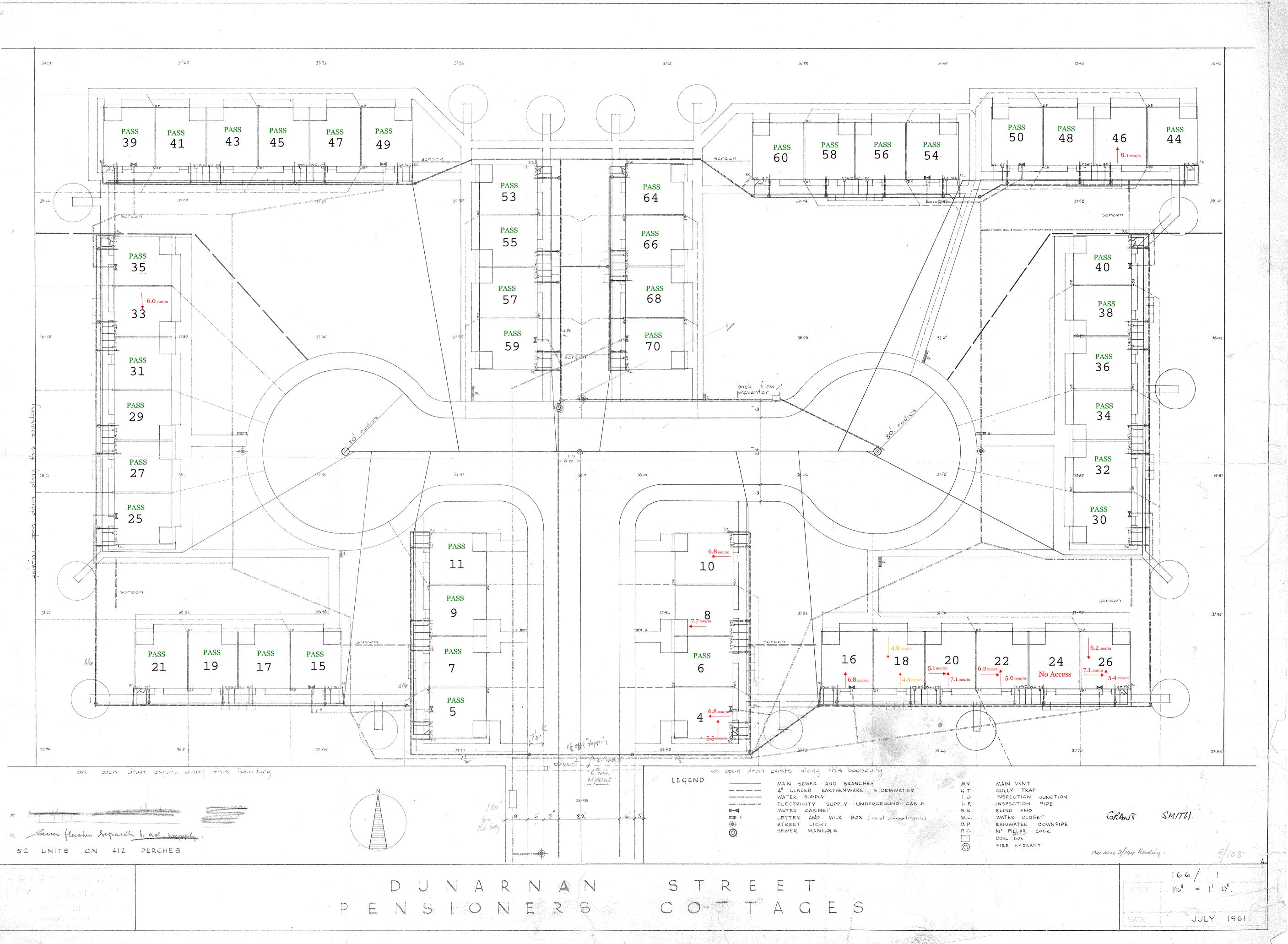
Seismic Parameters

As per NZS 1170.5:

- T < 0.4s (assumed)
- Soil: Category D
- Z = 0.3
- R = 1.0 (IL2, 50 year)
- N(T,D) = 1.0

For the analyses, a μ of 2 was assumed for the residential units.

Analysis Procedure


As the units are small and have a number of closely spaced walls in both directions, the fibrous plaster board ceilings are assumed to be capable of transferring loads to all walls. It was therefore assumed that a global method could be used to carry the forces down to ground level in each direction. Bracing capacities were found by assuming a certain kN/m rating for the walls along each line. Due to the relatively unknown nature of the walls, the kN/m rating was taken as 3 kN/m for all timber walls with an aspect ratio (height: length) of less than 2:1. This was scaled down to zero kN/m at an aspect ratio of 3.5:1 as per NZSEE guidelines. %NBS values were then found through the ratio of bracing demand to bracing capacity for all walls in each direction.

Additional Assumptions

Further assumptions about the seismic performance of the buildings were:

- Foundations and foundation connections had adequate capacity to resist and transfer earthquake loads.
- Connections between all elements of the lateral load resisting systems are detailed to adequately transfer their loads sufficiently and are strong enough so as to not fail before the lateral load resisting elements.

Appendix C – Level Survey

Appendix D – CERA DEE Spreadsheet

Detailed Engineering Evaluation Summary Data V1.14			
	: 4-70 Jecks Place	No: Street CPEng No:	M A Halliday 67073 Opus Internation Consultants Ltd. 6-QC363.00
GPS south GPS east Building Unique Identifier (CCC)		Min Sec Company phone number: 31 17.52 Date of submission: 40 42.82 Inspection Date: Revision: Revision: Is there a full report with this summary?	<u>21-Feb-14</u> <u>19/11/2013</u> 1
Site Site slope Soil type		Max retaining height (m): Soil Profile (if available):	
Site Class (to N2S1170.5) Proximity to waterway (m, if <100m) Proximity to clifftop (m, if <100m) Proximity to cliff base (m,if <100m)		If Ground improvement on site, describe: Approx site elevation (m):	4.00
Building No. of storeys above ground Ground floor split Storeys below groun Foundation type Building height (m) Floor footprint area (approx) Age of Building (years)	2 no 3 bored cast-insitu concrete piles 1 3.00 1 32	single storey = 1 Ground floor elevation (Absolute) (m): Ground floor elevation above ground (m): if Foundation type is other, describe: height from ground to level of uppermost seismic mass (for IEP only) (m): Date of design:	1935-1965
Strengthening present Use (ground floor) Use (upper floors) Use notes (if required) Importance level (to NZS1170.5)	multi-unit residential	If so, when (year)? And what load level (%g)? Brief strengthening description:	
Floors Beams Columns	: timber framed : timber : none	rafter type, purlin type and cladding joist depth and spacing (mm) overall depth x width (mm x mm) typical dimensions (mm x mm) 0	
Lateral load resisting structure Lateral system along Ductility assumed, μ Period along Total deflection (ULS) (mm) maximum interstorey deflection (ULS) (mm)	0.10	Note: Define along and across in detailed report! note typical wall length (m) 0.00 estimate or calculation? estimate or calculation? estimate or calculation?	1 estimated
Lateral system across Ductility assumed, µ Period across Total deflection (ULS) (mm) maximum interstorey deflection (ULS) (mm)	0.10	note typical wall length (m) 0.00 estimate or calculation? estimate or calculation? estimate or calculation?	estimated
Separations: north (mm) east (mm) south (mm) west (mm)		leave blank if not relevant	
	other heavy Metal timber frames fibrous plaster, fixed	describe describe	summerhill stone
Available documentation Architectura Structura Mechanica Electrica Geotech repor	l partial l none l none	original designer name/date original designer name/date original designer name/date original designer name/date original designer name/date	Christchurch City Council/1962
Differential settlement Liquefaction	inone observed inone observed 0-2 m³/100m² inone apparent none apparent 0-20mm/20m	Describe damage: notes (if applicable): notes (if applicable): notes (if applicable): notes (if applicable): notes (if applicable): notes (if applicable): notes (if applicable):	sinking in garden plots, damage to roads
Building: Current Placard Status Along Damage ratio Describe (summary) Across Damage ratio		Describe how damage ratio arrived at: $Damage _ Ratio = \frac{(\% NBS (before) - \% NBS (after))}{\% NBS (after)}$	
Describe (summary) Diaphragms Damage? CSWs: Damage? Pounding: Damage?	: yes : no	<i>Sumage _ hans % NBS (before)</i> Describe: Describe: Describe:	

Non-structural:	Damage :: jyes		Describe: Jining and Veneer cracking
Recommendation	s Level of repair/strengthening required: minor non-structural Building Consent required: no Interim occupancy recommendations: [full occupancy		Describe: Describe: Describe:
Along	Assessed %NBS before e'quakes: Assessed %NBS after e'quakes:	58% ##### %NBS from IEP below 58%	If IEP not used, please detail Equivalent Static assessment methodology:
Across	Assessed %NBS before e'quakes: Assessed %NBS after e'quakes:	100% ##### %NBS from IEP below 100%	

Detailed Engineering Evaluation Summary Data				V1.14
Location Building Nar	ne: Jecks Place Housing Complex - 6 unit blo	ck	Reviewer: M A Halliday	
		No: Street	CPEng No: Company: Opus Internatio	67073 on Consultants Ltd.
Legal Descripti			Company project number: 6-QC363.00 Company phone number: 03-363-5400	
GPS sou		Min Sec 31 17.52	Date of submission:	21-Feb-14
GPS ea		40 42.82	Inspection Date: Revision:	<u>19/11/2013</u> 1
Building Unique Identifier (CC	C): PRO 0702		Is there a full report with this summary? yes	
site slo]	Max retaining height (m):	
Soil ty Site Class (to NZS1170	5): D	-	Soil Profile (if available):	
Proximity to waterway (m, if <100 Proximity to clifftop (m, if < 100 Proximity to cliff base (m,if <100	n):		If Ground improvement on site, describe:	4.00
Floxinity to clin base (in,ii <100		1	Approx site elevation (iii).	4.00
uilding No. of storeys above grou	nd:1	single storey = 1	Ground floor elevation (Absolute) (m):	
Ground floor sp Storeys below grou	it? no		Ground floor elevation above ground (m):	
	e: bored cast-insitu concrete piles	1	if Foundation type is other, describe: uppermost seismic mass (for IEP only) (m):	
Floor footprint area (appro Age of Building (yea	x): 198		Date of design: 1935-1965	
	,	-		
Strengthening prese			If so, when (year)? And what load level (%g)?	
Use (upper floo			Brief strengthening description:	
Use notes (if require Importance level (to NZS1170				
Gravity Structure	n: frama sustam	1		
R	n: frame system of: timber framed rs: timber		rafter type, purlin type and cladding joist depth and spacing (mm)	
Beau	none ns: timber		overall depth x width (mm x mm) typical dimensions (mm x mm)	
	s: non-load bearing]	0	
<u>ateral load resisting structure</u> Lateral system alo	g: lightweight timber framed walls	Note: Define along and across in	note typical wall length (m)	1
Ductility assumed Period alo	μ: 2.00	detailed report!	estimate or calculation? estimated	
Total deflection (ULS) (m maximum interstorey deflection (ULS) (m	n):		estimate or calculation?	
Lateral system acro	ss: lightweight timber framed walls]	note typical wall length (m)	
Ductility assumed Period acro	0.10		estimate or calculation? estimated	
Total deflection (ULS) (m maximum interstorey deflection (ULS) (m]	estimate or calculation?	
Separations: north (m	n).	leave blank if not relevant		
east (m south (m	n):			
west (m]		
<u>Non-structural elements</u> Sta	rs:]		
Roof Claddi			describe summerhill sto describe corrogated iror	
Ceilin	ng: timber frames s: fibrous plaster, fixed			
Services(li	:			
Available documentation				itu Council/1222
Architectu Structu Mechani	ral partial		original designer name/date Christchurch C original designer name/date original designer name/date	
Electri	cal none		original designer name/date	
Geotech rep			original designer name/date	
Damage Site: Site performan	ce:good		Describe damage: sinking in gard	en plots, damage to roads
refer DEE Table 4-2) Settleme	nt: none observed		notes (if applicable):	
Differential settleme Liquefacti	nt: none observed on: 0-2 m ³ /100m ²		notes (if applicable): notes (if applicable):	
Lateral Spre Differential lateral spre	ad: none apparent ad: none apparent		notes (if applicable): notes (if applicable):	
Ground crac Damage to ar	ks: 0-20mm/20m		notes (if applicable): notes (if applicable):	
Building:				
Current Placard Stat				
Along Damage ra Describe (summa		1	Describe how damage ratio arrived at:	
Across Damage ra Describe (summa		Damage Aano	pefore) – % NBS (after)) % NBS (before)	
Diaphragms Damag			Describe:	
CSWs: Damag			Describe:	
Pounding: Damag			Describe:	
Damag				

Non-structural:	Damage 2 yes		Describe: linning and veneer cracking
Recommendatio			
	Level of repair/strengthening required: <u>minor non-structural</u> Building Consent required: <u>no</u> Interim occupancy recommendations: <u>full occupancy</u>		Describe: Describe: Describe:
Along	Assessed %NBS before e'quakes: Assessed %NBS after e'quakes:	58% ##### %NBS from IEP below 58%	If IEP not used, please detail Equivalent Static assessment methodology:
Across	Assessed %NBS before e'quakes: Assessed %NBS after e'quakes:	100% ##### %NBS from IEP below 100%	

etailed Engineering Evaluation Summary Data V1.14			
Location Building Name:	Jecks Place Housing Complex - Residents	lounge	Reviewer: M A Halliday
		No: Street	CPEng No: 67073 Company: Opus Internation Consultants Ltd.
Legal Description:			pany project number: 6-QC363.00 pany phone number: 03-363-5400
GPS south:		Min Sec 31 17.52	Date of submission: 21-Feb-14
GPS south GPS east:		40 42.82	Inspection Date: 19/11/2013
Building Unique Identifier (CCC):	PRO 0702	Is there a full repor	Revision: 1 t with this summary? yes
Site			
Site slope: Soil type:	flat		retaining height (m): Profile (if available):
Site Class (to NZS1170.5): Proximity to waterway (m, if <100m):			ent on site, describe:
Proximity to clifftop (m, if < 100m): Proximity to cliff base (m,if <100m):			ox site elevation (m): 4.00
		יעאע	
Building			
No. of storeys above ground: Ground floor split?	no	single storey = 1 Ground floor elev Ground floor elevatio	ration (Absolute) (m):
Storeys below ground Foundation type:	0 strip footings	if Foundation ty	be is other, describe:
Building height (m): Floor footprint area (approx):	3.00	height from ground to level of uppermost seismic ma	ss (for IEP only) (m):
Age of Building (years):			Date of design: 1992-2004
Strengthening present?	no		If so, when (year)?
	multi-unit residential		ht load level (%g)?
Use (upper floors):			
Use notes (if required): Importance level (to NZS1170.5):			
Gravity Structure			
Gravity System: Roof:	frame system timber framed	rafter type, pur	lin type and cladding
Floors: Beams:	concrete flat slab timber		slab thickness (mm)type
Columns: Walls:	timber non-load bearing	typical dir	nensions (mm x mm)
Lateral load resisting structure			
	lightweight timber framed walls 2.00		/pical wall length (m)
Period along:	0.10		imate or calculation? estimated
Total deflection (ULS) (mm): maximum interstorey deflection (ULS) (mm):			imate or calculation?
	lightweight timber framed walls	note ty	/pical wall length (m)
Ductility assumed, µ: Period across:	2.00	0.00 est	imate or calculation? estimated
Total deflection (ULS) (mm): maximum interstorey deflection (ULS) (mm):			imate or calculation?
Separations:			
north (mm): east (mm):		leave blank if not relevant	
south (mm): west (mm):			
Non-structural elements			
Stairs:		deseribe	(asta asuity if aviata) and brief
Wall cladding: Roof Cladding:	Metal	describe	(note cavity if exists) red brick describe
Ceilings:	aluminium frames fibrous plaster, fixed		
Services(list):			
Available documentation			
Architectural Structural	partial		designer name/date Christchurch City Council/1962 designer name/date
Mechanical Electrical	none	original	designer name/date designer name/date
Geotech report			designer name/date
Damage			
Site: Site performance:	good		Describe damage: sinking in garden plots, damage to roads
	none observed		notes (if applicable):
Differential settlement: Liquefaction: Lateral Spread:	0-2 m ³ /100m ²		notes (if applicable): notes (if applicable):
Differential lateral spread:	none apparent		notes (if applicable):notes (if applicable):
Ground cracks: Damage to area:	0-20mm/20m		notes (if applicable): notes (if applicable):
Building:			
Current Placard Status:	green		
Along Damage ratio: Describe (summary):			nage ratio arrived at:
		$Damage _Ratio = \frac{(\% NBS (before) - \% NBS)}{\% NBS (before)}$	(after))
Across Damage ratio: Describe (summary):		$Damage _Ratio = {\% NBS (before)}$	
Diaphragms Damage?:	no		Describe:
CSWs: Damage?:	no		Describe:
Pounding: Damage?:	no		Describe:

Non-structural:	Damage ?: lyes		Describe. Immig cracking
Recommendations	Level of repair/strengthening required: minor non-structural		Describe:
	Building Consent required: no Interim occupancy recommendations: full occupancy		Describe:
Along	Assessed %NBS before e'quakes: Assessed %NBS after e'quakes:	100% ##### %NBS from IEP below 100%	If IEP not used, please detail Equivalent Static assessment methodology:
Across	Assessed %NBS before e'quakes: Assessed %NBS after e'quakes:	100% #### %NBS from IEP below 100%	

Opus International Consultants Ltd 20 Moorhouse Avenue PO Box 1482, Christchurch Mail Centre, Christchurch 8140 New Zealand

t: +64 3 363 5400 f: +64 3 365 7858 w: www.opus.co.nz