

aurecon

Bottle Lake Forest - Toilets

Qualitative Engineering Evaluation

Functional Location ID: PRK_0158_BLDG _012

Address: 70 Waitikiri Drive

Reference: 228596

Prepared for:

Christchurch City Council

Revision: 3

Date: 10 October 2013

Document Control Record

Document prepared by:

Aurecon New Zealand Limited Level 2, 518 Colombo Street Christchurch 8011 PO Box 1061 Christchurch 8140 New Zealand

T +64 3 375 0761 F +64 3 379 6955

Ε christchurch@aurecongroup.com

aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
 Using the documents or data for any purpose not agreed to in writing by Aurecon.

Docu	ıment control					aurecon		
Repor	t Title	Qualitative Engineering Evaluation						
Functional Location ID		PRK_0158_BLDG _012	Project Number		228596			
File Pa	ath	P:\ 228596 - Bottle Lak	e Forest - Toile	ets.docx				
Client		Christchurch City Council	Client Conta	ct	Michael Sheffie	eld		
Rev	Date	Revision Details/Status	Prepared	C. Bong	Verifier	Approver		
1	4 May 2012	Draft	C. Bong	C. Bong	S. Manning	S. Manning		
2	21 December 2012	Final	C. Bong	C. Bong	L. Castillo	L. Castillo		
3	10 October 2013	Final	C. Bong	C. Bong	L. Castillo	L. Castillo		
Currer	nt Revision	3						

Approval			
Author Signature	Jrod of many	Approver Signature	
Name	Chris Bong	Name	Luis Castillo
Title	Structural Engineer	Title	Senior Structural Engineer

Contents

Ex	ecutiv	e Summary	1
1	Intro	oduction	2
	1.1	General	2
2	Des	cription of the Building	2
	2.1	Building Age and Configuration	2
	2.2	Building Structural Systems Vertical and Horizontal	2
	2.3	Reference Building Type	2
	2.4	Building Foundation System and Soil Conditions	3
	2.5	Available Structural Documentation and Inspection Priorities	3
	2.6	Available Survey Information	3
3	Stru	ctural Investigation	3
	3.1	Summary of Building Damage	3
	3.2	Record of Intrusive Investigation	3
	3.3	Damage Discussion	3
4	Buil	ding Review Summary	4
5	Buil	ding Strength (Refer to Appendix C for background information)	4
6	Con	clusions and Recommendations	4
7	Exp	lanatory Statement	5

Appendices

Appendix A Photos, Site map and Level Survey

Appendix B References

Appendix C Strength Assessment Explanation

Appendix D Background and Legal Framework

Appendix E Standard Reporting Spread Sheet

Executive Summary

This is a summary of the Qualitative Engineering Evaluation for the Bottle Lake Forest - Toilets building and is based on the Detailed Engineering Evaluation Procedure document issued by the Engineering Advisory Group on 19 July 2011, visual inspections, available structural documentation and summary calculations as appropriate.

Building Details	Name	Bottle Lake F	orest	- Toilets	5		
Building Location ID	PRK_0158	_BLDG _012 Multiple Building Site Y					
Building Address	70 Waitikiri	Drive			No. of r	esidential units	0
Soil Technical Category	N/A	Importance Level		1	Approx	imate Year Built	1995
Foot Print (m²)	10	Storeys above gro	und	1	Storeys	s below ground	0
Type of Construction	Light weigh	nt timber purlins on ste	eel truss	oof, partially	filled cor	ncrete masonry walls,	concrete
Qualitative L4 Repor	t Results	Summary					
Building Occupied	Y	Currently used as a	toilet blo	ck.			
Suitable for Continued Occupancy	Y	Little to no visible damage.					
Key Damage Summary	Y	Refer to summary of building damage Section 3.1 report body.					
Critical Structural Weaknesses (CSW)	N	No critical structural	weaknes	sses were for	und.		
Levels Survey Results	Y	Levels survey results indicate levels are within allowable limits.					
Building %NBS From Analysis	Approx. 100%	Analysis based on a	ssumed	approximate	building	material strengths.	
Qualitative L4 Repor	t Recom	mendations					
Geotechnical Survey Required	N	Uncategorised, Te	echnical	Category 2	by extra	apolation.	
Proceed to L5 Quantitative DEE	N	A quantitative DEE	is not req	uired for this	structure).	
Approval							
Author Signature	le	filey	А	pprover Sig	nature		
Name	Christoph	er Bong			Name	Luis Castillo	
Title	Structural	Engineer			Title	Senior Structural E	Enginee

1 Introduction

1.1 General

On 14 March 2012, Aurecon engineers visited the Bottle Lake Forest - Toilets to conduct a Qualitative Engineering Evaluation on behalf of the Christchurch City Council. Detailed visual inspections were carried out to assess the damage caused by the earthquakes during the 4 September 2010, 22 February 2011, 13 June 2011, 23 December 2011 and their subsequent aftershocks.

The scope of work included:

- Assessment of the nature and extent of the building damage; and
- Visual assessment of the building strength, particularly with respect to the safety of the building occupants, if occupied; and
- Assessment of requirements for detailed engineering evaluation including geotechnical investigation, level survey and any areas where linings and floor coverings need removal to expose structural damage.

This report outlines the results of our qualitative assessment of damage to the Bottle Lake Forest - Toilets and is based on the Detailed Engineering Evaluation Procedure Guidance prepared by the Engineering Advisory Group on 19 July 2011, as well as visual inspections, available structural documentations and summary calculations as appropriate.

2 Description of the Building

2.1 Building Age and Configuration

The Bottle Lake Forest - Toilets is a single storey, concrete masonry wall structure. From the construction drawings, the building was constructed in 1995. The corrugated steel roof is supported on lightweight timber purlins supported by steel trusses made of hot rolled hollow steel sections. The roof sits on reinforced concrete masonry walls founded on a concrete pad.

The floor area of the toilet block is approximately 10 square metres and is classified as an importance level 1 building according to NZS 1170 Part 0: 2002.

2.2 Building Structural Systems Vertical and Horizontal

The load paths in both the vertical and horizontal directions for the toilet block are resisted by the same systems. Tracing the loads from top to bottom, the vertical loads originate from the corrugated steel roof before running through the lightweight timber purlins and hollow section steel trusses. The roof loads are then transferred to the ground by masonry walls and into the concrete pad foundation.

2.3 Reference Building Type

Being a concrete masonry building the Bottle Lake Forest - Toilets is a low ductility structure. Due to rigidity and low ductility buildings of this nature are more prone to seismic damage than light weight timber framed structures. However being a small structure with numerous walls there is the potential to resist loads adequately within the elastic limit and as a consequence experience little damage.

2.4 Building Foundation System and Soil Conditions

The Bottle Lake Forest - Toilets is founded on a reinforced concrete pad foundation. Drawings indicate the foundation structure is likely appropriate for the supported loads from the toilet structure.

The CERA land zone maps indicate that the Bottle Lake Forest - Toilets currently sits on "Yet to be Classified Rural & Unmapped Land", however the land to the immediate south has been classed as Technical Category 2 Land. Thus by extrapolation, the land has been deemed possibly subject to minor to moderate damage from liquefaction or settlement in future earthquakes or associated aftershocks. The site inspection has shown no obvious ground disturbance or movement in the immediate vicinity of the building.

2.5 Available Structural Documentation and Inspection Priorities

Drawings for the building were available for review after the damage assessment was carried out. The connections and details for the building looked to be of sound design and consistent with site observations.

2.6 Available Survey Information

A levels survey has been carried out and a sketch of the results is attached in appendix B. The results of the survey show that existing floor levels are within acceptable limits.

3 Structural Investigation

3.1 Summary of Building Damage

A detailed visual inspection was undertaken for the interior and exterior of the Bottle Lake Forest - Toilets. There was no visible damage to the roof structure, concrete masonry walls or mortar joints when the interior and exterior of the building was inspected on PRK_0158_BLDG_012.

3.2 Record of Intrusive Investigation

In light of the lack of associated damage to the primary structural elements, an intrusive investigation was neither warranted nor undertaken.

3.3 Damage Discussion

The building has suffered no damage as a result of recent seismic activity. Lack of damage indicates that, due to the presence of sufficient walls in each direction, the Bottle Lake Forest - Toilets was able to respond within its elastic limits.

4 Building Review Summary

All the primary structural elements of the Bottle Lake Forest - Toilets were immediately visible and construction drawings were available. The only area not immediately visible and not able to be inspected was the building foundation. However as there was no slab damage visible and no obvious signs of settlement it was decided that it could be inferred that little damage had occurred in this area.

5 Building Strength (Refer to Appendix C for background information)

The seismic capacity of the structure was estimated from first principals. For the damage assessment, the rough size and geometry of the wall was obtained and the capacity in each direction was calculated based on approximate figures for material strength. The capacity was then compared to the load demand required based on current code.

The findings of this exercise resulted in a demand/capacity ratio expressed in terms of percentage new building strength (%NBS) in excess of 100%. This implies that the building is capable of achieving the strength of a new building as required by current building codes. This is not surprising considering the recent construction of the building.

6 Conclusions and Recommendations

Bottle Lake Forest - Toilets has been assessed as having in excess of 100%NBS and no critical structural weaknesses were found accordingly it is considered acceptable for building to continue to be occupied in a manner similar to current occupancy.

As a levels survey has been carried out and levels have been found to be within acceptable limits no further action or investigations are required at this point.

Explanatory Statement

The inspections of the building discussed in this report have been undertaken to assess structural earthquake damage. No analysis has been undertaken to assess the strength of the building or to determine whether or not it complies with the relevant building codes, except to the extent that Aurecon expressly indicates otherwise in the report. Aurecon has not made any assessment of structural stability or building safety in connection with future aftershocks or earthquakes - which have the potential to damage the building and to jeopardise the safety of those either inside or adjacent to the building, except to the extent that Aurecon expressly indicates otherwise in the report.

This report is necessarily limited by the restricted ability to carry out inspections due to potential structural instabilities/safety considerations, and the time available to carry out such inspections. The report does not address defects that are not reasonably discoverable on visual inspection, including defects in inaccessible places and latent defects. Where site inspections were made, they were restricted to external inspections and, where practicable, limited internal visual inspections.

To carry out the structural review, existing building drawings were obtained (where available) from the Christchurch City Council records. We have assumed that the building has been constructed in accordance with the drawings.

While this report may assist the client in assessing whether the building should be repaired, strengthened, or replaced that decision is the sole responsibility of the client.

This review has been prepared by Aurecon at the request of its client and is exclusively for the client's use. It is not possible to make a proper assessment of this review without a clear understanding of the terms of engagement under which it has been prepared, including the scope of the instructions and directions given to and the assumptions made by Aurecon. The report will not address issues which would need to be considered for another party if that party's particular circumstances, requirements and experience were known and, further, may make assumptions about matters of which a third party is not aware. No responsibility or liability to any third party is accepted for any loss or damage whatsoever arising out of the use of or reliance on this report by any third party.

Without limiting any of the above, Aurecon's liability, whether under the law of contract, tort, statute, equity or otherwise, is limited as set out in the terms of the engagement with the client.

Appendices

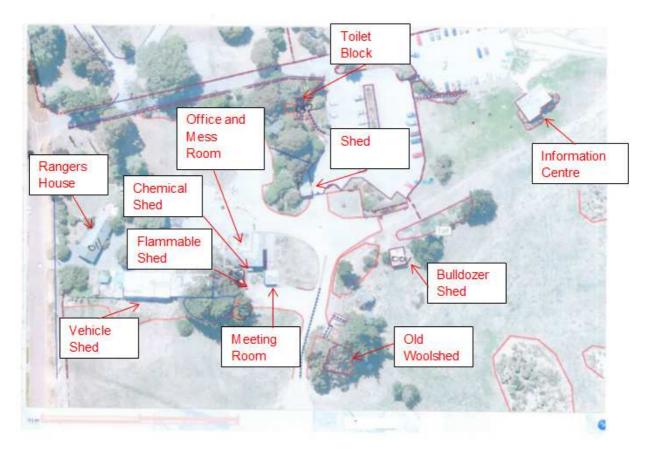
Appendix A

Photos, Site Map and Level survey

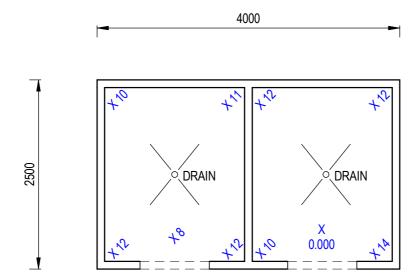
14 March 2012 - Bottle Lake Forest - Toilets Site Photographs

Front elevation of Bottle Lake Forest Toilets

Side elevation of Bottle Lake Forest Toilets


Steel truss to timber purlin connection taken from the interior and exterior of the building

aurecon


Steel truss to timber purlin connection taken from the interior and exterior of the building

Site Layout Plan

äurecon

DATE	REVISION DETAILS	APPROVAL	DRAWN	DESIGNED
			D.HUNIA	C.BONG
			CHEC	CKED
			L.CAS	TILLO
			APPR	OVED
				DATE
			LCACTILL	^

	_
PRELIMINARY NOT FOR CONSTRUCT	
PROJECT No.	
228596	
220000	
SCALE	SIZE
1:50	A4
DRAWING No.	REV
S-01-00	
0 0 1 00	

Appendix B

References

- 1. Department of Building and Housing (DBH), "Revised Guidance on Repairing and Rebuilding Houses Affected by the Canterbury Earthquake Sequence", November 2011
- 2. New Zealand Society for Earthquake Engineering (NZSEE), "Assessment and Improvement of the Structural Performance of Buildings in Earthquakes", April 2012
- 3. Standards New Zealand, "AS/NZS 1170 Part 0, Structural Design Actions: General Principles", 2002
- 4. Standards New Zealand, "AS/NZS 1170 Part 1, Structural Design Actions: Permanent, imposed and other actions", 2002
- 5. Standards New Zealand, "NZS 1170 Part 5, Structural Design Actions: Earthquake Actions New Zealand", 2004
- 6. Standards New Zealand, "NZS 3101 Part 1, The Design of Concrete Structures", 2006
- 7. Standards New Zealand, "NZS 3404 Part 1, Steel Structures Standard", 1997
- 8. Standards New Zealand, "NZS 3603, Timber Structures Standard", 1993
- 9. Standards New Zealand, "NZS 3604, Timber Framed Structures", 2011
- Standards New Zealand, "NZS 4229, Concrete Masonry Buildings Not Requiring Specific Engineering Design", 1999
- 11. Standards New Zealand, "NZS 4230, Design of Reinforced Concrete Masonry Structures", 2004

Appendix C

Strength Assessment Explanation

New Building Standard (NBS)

New building standard (NBS) is the term used with reference to the earthquake standard that would apply to a new building of similar type and use if the building was designed to meet the latest design Codes of Practice. If the strength of a building is less than this level, then its strength is expressed as a percentage of NBS.

Earthquake Prone Buildings

A building can be considered to be earthquake prone if its strength is less than one third of the strength to which an equivalent new building would be designed, that is, less than 33%NBS (as defined by the New Zealand Building Act). If the building strength exceeds 33%NBS but is less than 67%NBS the building is considered at risk.

Christchurch City Council Earthquake Prone Building Policy 2010

The Christchurch City Council (CCC) already had in place an Earthquake Prone Building Policy (EPB Policy) requiring all earthquake-prone buildings to be strengthened within a timeframe varying from 15 to 30 years. The level to which the buildings were required to be strengthened was 33%NBS.

As a result of the 4 September 2010 Canterbury earthquake the CCC raised the level that a building was required to be strengthened to from 33% to 67% NBS but qualified this as a target level and noted that the actual strengthening level for each building will be determined in conjunction with the owners on a building-by-building basis. Factors that will be taken into account by the Council in determining the strengthening level include the cost of strengthening, the use to which the building is put, the level of danger posed by the building, and the extent of damage and repair involved.

Irrespective of strengthening level, the threshold level that triggers a requirement to strengthen is 33%NBS.

As part of any building consent application fire and disabled access provisions will need to be assessed.

Christchurch Seismicity

The level of seismicity within the current New Zealand loading code (AS/NZS 1170) is related to the seismic zone factor. The zone factor varies depending on the location of the building within NZ. Prior to the 22nd February 2011 earthquake the zone factor for Christchurch was 0.22. Following the earthquake the seismic zone factor (level of seismicity) in the Christchurch and surrounding areas has been increased to 0.3. This is a 36% increase.

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The new building standard load requirements have been determined in accordance with the current earthquake loading standard (NZS 1170.5:2004 Structural design actions - Earthquake actions - New Zealand).

The likely capacity of this building has been derived in accordance with the New Zealand Society for Earthquake Engineering (NZSEE) guidelines 'Assessment and Improvement of the Structural Performance of Buildings in Earthquakes' (AISPBE), 2006. These guidelines provide an Initial Evaluation Procedure that assesses a buildings capacity based on a comparison of loading codes from when the building was designed and currently. It is a quick high-level procedure that can be used when undertaking a Qualitative analysis of a building. The guidelines also provide guidance on calculating a modified Ultimate Limit State capacity of the building which is much more accurate and can be used when undertaking a Quantitative analysis.

The New Zealand Society for Earthquake Engineering has proposed a way for classifying earthquake risk for existing buildings in terms of %NBS and this is shown in Figure C1 below.

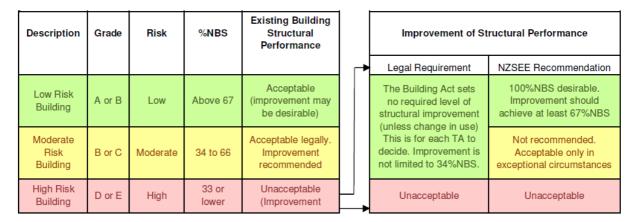


Figure C1: NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE Guidelines

Table C1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% probability of exceedance in 50 years (i.e. 0.2% in the next year). It is noted that the current seismic risk in Christchurch results in a 6% probability of exceedance in the next year.

Table C1: Relative Risk of Building Failure In A

Percentage of New Building Standard (%NBS)	Relative Risk (Approximate)
>100	<1 time
80-100	1-2 times
67-80	2-5 times
33-67	5-10 times
20-33	10-25 times
<20	>25 times

V

Appendix D

Background and Legal Framework

Background

Aurecon has been engaged by the Christchurch City Council (CCC) to undertake a detailed engineering evaluation of the building

This report is a Qualitative Assessment of the building structure, and is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011.

A qualitative assessment involves inspections of the building and a desktop review of existing structural and geotechnical information, including existing drawings and calculations, if available.

The purpose of the assessment is to determine the likely building performance and damage patterns, to identify any potential critical structural weaknesses or collapse hazards, and to make an initial assessment of the likely building strength in terms of percentage of new building standard (%NBS).

Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 - Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 - Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee carry out a full structural survey before the building is re-occupied.

We understand that CERA will require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). It is anticipated that CERA will adopt the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. This document sets out a methodology for both qualitative and quantitative assessments.

The qualitative assessment is a desk-top and site inspection assessment. It is based on a thorough visual inspection of the building coupled with a review of available documentation such as drawings and specifications. The quantitative assessment involves analytical calculation of the buildings strength and may require non-destructive or destructive material testing, geotechnical testing and intrusive investigation.

It is anticipated that factors determining the extent of evaluation and strengthening level required will include:

- The importance level and occupancy of the building
- The placard status and amount of damage
- The age and structural type of the building
- · Consideration of any critical structural weaknesses
- The extent of any earthquake damage

Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to any alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 - Change of Use

This section requires that the territorial authority (in this case Christchurch City Council (CCC)) be satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'. Regarding seismic capacity 'as near as reasonably practicable' has previously been interpreted by CCC as achieving a minimum of 67%NBS however where practical achieving 100%NBS is desirable. The New Zealand Society for Earthquake Engineering (NZSEE) recommend a minimum of 67%NBS.

Section 121 - Dangerous Buildings

The definition of dangerous building in the Act was extended by the Canterbury Earthquake (Building Act) Order 2010, and it now defines a building as dangerous if:

- in the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- in the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- there is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- there is a risk that that other property could collapse or otherwise cause injury or death; or
- a territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 - Earthquake Prone Buildings

This section defines a building as earthquake prone if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property. A moderate earthquake is defined by the building regulations as one that would generate ground shaking 33% of the shaking used to design an equivalent new building.

Section 124 - Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 - Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake of the 4th September 2010.

The 2010 amendment includes the following:

- A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;
- A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

We anticipate that any building with a capacity of less than 33%NBS (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67%NBS of new building standard as recommended by the Policy.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

Building Code

The building code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

After the February Earthquake, on 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- Hazard Factor increased from 0.22 to 0.3 (36% increase in the basic seismic design load)
- Serviceability Return Period Factor increased from 0.25 to 0.33 (80% increase in the serviceability design loads when combined with the Hazard Factor increase)

The increase in the above factors has resulted in a reduction in the level of compliance of an existing building relative to a new building despite the capacity of the existing building not changing.

Appendix E Standard Reporting Spread Sheet

Detailed Engineering	ng Evaluation Summary Data				V1.11
Location	Ruilding Name:	Bottle Lake Forest - Toilets		Positiveore	Simon Manning
	Building Address:	Unit	No: Street 70 Waitikiri Drive	CPEng No: Company:	132053
	Legal Description:			Company project number: Company phone number:	228596
	GPS south:	Degrees 43	Min Sec 2815.78	Date of submission:	10/10/2013
	GPS east:			Inspection Date: Revision:	14/03/2012
	Building Unique Identifier (CCC):	PRK 0158 BLDG 012	Ī	Is there a full report with this summary?	yes
Site	Site slope:	flat	I	Max retaining height (m):	
	Soil type: Site Class (to NZS1170.5):	mixed		Soil Profile (if available):	
	Proximity to waterway (m, if <100m): Proximity to clifftop (m, if < 100m):			If Ground improvement on site, describe:	
	Proximity to cliff base (m,if <100m):			Approx site elevation (m):	3.30
Building					
	No. of storeys above ground: Ground floor split?	no	single storey = 1	Ground floor elevation (Absolute) (m): Ground floor elevation above ground (m):	3.40 0.10
	Storeys below ground Foundation type:	other (describe)		if Foundation type is other, describe:	
	Building height (m): Floor footprint area (approx):	4.00		uppermost seismic mass (for IEP only) (m):	2.8
	Age of Building (years):	10		Date of design:	1992-2004
	Strengthening present?	no	I	If so, when (year)? And what load level (%g)?	
	Use (ground floor): Use (upper floors):	public		Brief strengthening description:	
	Use notes (if required): Importance level (to NZS1170.5):	toilet block			
Gravity Structure	portainos isvoi (to 1923 i 170.5):				
a.r., on acture		load bearing walls steel truss		truss depth, purlin type and cladding	
	Floors: Beams:	concrete flat slab		slab thickness (mm) overall depth x width (mm x mm)	
	Columns:	load bearing walls partially filled concrete masonry		typical dimensions (mm x mm) thickness (mm)	140
Lateral load resisting	g structure				
	Lateral system along: Ductility assumed, μ:	1.25		note total length of wall at ground (m): wall thickness (m):	
	Period along: Total deflection (ULS) (mm):	0.40	##### enter height above at H31	estimate or calculation? estimate or calculation?	estimated
ma	aximum interstorey deflection (ULS) (mm):			estimate or calculation?	estimated
	Lateral system across: Ductility assumed, μ:	1.25		note total length of wall at ground (m): wall thickness (m):	
	Period across: Total deflection (ULS) (mm):	0.40	##### enter height above at H31	estimate or calculation? estimate or calculation?	estimated
	aximum interstorey deflection (ULS) (mm):			estimate or calculation?	estimated
Separations:	north (mm):		leave blank if not relevant		
	east (mm): south (mm):				
	west (mm):				
Non-structural elem	Stairs:			J	
	Roof Cladding:	exposed structure Metal		describe describe	corrugated iron
	Glazing: Ceilings: Services(list):				
	Get vices (list).		1		
Available documen	ntation Architectural	none	Ī	original designer name/date	Design service unit CCC 1994
	Structural Mechanical	none		original designer name/date original designer name/date	Design service unit CCC 1994
	Electrical Geotech report	none		original designer name/date original designer name/date	
Damage Site:	Site performance:		I	Describe damage:	minor - none
(refer DEE Table 4-:	Settlement:	none observed		notes (if applicable):	
	Differential settlement: Liquefaction:	none apparent		notes (if applicable): notes (if applicable):	
	Lateral Spread: Differential lateral spread:	none apparent		notes (if applicable): notes (if applicable):	
	Ground cracks: Damage to area:	none apparent		notes (if applicable): notes (if applicable):	
Building:	Current Placard Status:	areen	Ī		
Along	Damage ratio:			Describe how damage ratio arrived at:	
uong	Damage ratio: Describe (summary):				
Across	Damage ratio: Describe (summary):	0%	$Damage _Ratio = \frac{(\% NBS)(b)}{9}$	efore) – % NBS (after)) 6 NBS (before)	
Diaphragms	Describe (summary): Damage?:	no	, 	Describe:	
CSWs:	Damage?:			Describe	
Pounding:	Damage?:			Describe:	
Non-structural:	Damage?:			Describe:	
				2330180	
Recommendations	Level of repair/strengthening required:	minor non-structural		Describe:	
	Building Consent required: Interim occupancy recommendations:	no		Describe: Describe:	
Along	Assessed %NBS before:		##### %NBS from IEP below	If IEP not used, please detail assessment	Capacity and demand calculations from firs
	Assessed %NBS after:	100%		methodology:	
Across	Assessed %NBS before: Assessed %NBS after:	100% 100%	##### %NBS from IEP below		
EP			analysis may give a different answer, which		
	Period of design of building (from above):			h₁ from above:	
Seismic 2	Zone, if designed between 1965 and 1992:	В	Desic	not required for this age of building in Soil type from NZS4203:1992, cl 4.6.2.2:	
				along	across
			Period (from above): (%NBS)nom from Fig 3.3:	0.4	0.4
	Note:1 for specificall	by design public buildings, to the code of the	day: pre-1965 = 1.25; 1965-1976, Zone A =	1.33; 1965-1976, Zone B = 1.2; all else 1.0	
			Note 2: for RC buildi	ngs designed between 1976-1984, use 1.2 to 1935 use 0.8, except in Wellington (1.0)	
				along	across
			Final (%NBS)nom:	0%	0%

2.2 Near Fault Scaling Factor		Near Fault scaling factor (1/N(T,D), Factor A:	It scaling factor, from NZS1170. along #DIV/0!		across #DIV/0!
				T. 1. 0.0	#5.V/U:
2.3 Hazard Scaling Factor		Hazard 1	factor Z for site from AS1170.5, Z ₁₉₉₂ , from NZS		
			Hazard scaling factor,		#DIV/0!
2.4 Return Period Scaling Factor			Building Importance level (fro	m above):	1
		Return Perio	d Scaling factor from Table 3.1,		
2.5 Ductility Scaling Factor		Assessed ductility (less than max in Table 3.2)	along		across
,		6 onwards; or =kμ, if pre-1976, fromTable 3.3:			
		Ductiity Scaling Factor, Factor D:	1.00		1.00
2.6 Structural Performance Scaling	Factor:	Sp:			
	Str	ructural Performance Scaling Factor Factor E:	#DIV/0!		#DIV/0!
2.7 Baseline %NBS, (NBS%) _b = (%N	(BS)nom x A x B x C x D x E	%NBS _b :	#DIV/0!		#DIV/0!
Global Critical Structural Weaknesse	o: (refer to N7SEE IED Toble 2.4)				
	<u> </u>				
3.1. Plan Irregularity, factor A:	insignificant	1			
3.2. Vertical irregularity, Factor B:	insignificant	1			
3.3. Short columns, Factor C:	insignificant	Table for selection of D1	Severe	Significant	Insignificant/n
3.4. Pounding potential	Pounding effect D1, from Table to right		Separation 0 <sep<.005< td=""><td></td><td>Sep>.01H</td></sep<.005<>		Sep>.01H
	leight Difference effect D2, from Table to right			0.8 0.7	0.8
	Therefore, Factor D		Severe	Significant	Insignificant/n
0.5.00.00	· · · · ·		Separation 0 <sep<.005< td=""><td></td><td>Sep>.01H</td></sep<.005<>		Sep>.01H
3.5. Site Characteristics	insignificant	1 Height difference		0.7	1
		Height difference 2	to 4 storeys 0.7	0.9	1
		Height difference	< 2 storeys 1	1	1
3.6. Other factors, Factor F	For < 2 storage, may value	=2.5, otherwise max valule =1.5, no minimum	Along		Across
3.0. Other factors, ractor r	Tot 3 3 storeys, max value	Rationale for choice of F factor, if not 1			
Detail Critical Structural Weakness	s: (refer to DEE Procedure section 6)				
		Refer also section 6.3.1 of DEE for discussion	n of F factor modification for oth	er critical structural weakne	sses
List ar	ent ratio (DAD)	[0.00		0.00
3.7. Overall Performance Achievem	ent ratio (PAR)				
3.7. Overall Performance Achievem	ent rano (FAK)	PAR x Baselline %NBS:	#DIV/0!		#DIV/0!
		PAR x Baselline %NBS:	#DIV/0!		#DIV/0!

Aurecon New Zealand Limited Level 2, 518 Colombo Street Christchurch 8011

PO Box 1061 Christchurch 8140 New Zealand

T +64 3 375 0761
F +64 3 379 6955
E christchurch@aurecongroup.com
W aurecongroup.com

Aurecon offices are located in:
Angola, Australia, Botswana, China,
Ethiopia, Hong Kong, Indonesia,
Lesotho, Libya, Malawi, Mozambique,
Namibia, New Zealand, Nigeria,
Philippines, Singapore, South Africa,
Swaziland, Tanzania, Thailand, Uganda,
United Arab Emirates, Vietnam.