

aurecon

Bottle Lake Forest Park Meeting Room Qualitative Engineering Evaluation Functional Location ID: PRK 0158 BLDG 003 EQ2 Address: 70 Waitikiri Drive

Reference: 228590 Prepared for: Christchurch City Council

Revision: 2 Date: 21 December 2012

Document Control Record

Document prepared by:

Aurecon New Zealand Limited Level 2, 518 Colombo Street Christchurch 8011 PO Box 1061 Christchurch 8140 New Zealand

- Т +64 3 375 0761
- F +64 3 379 6955
- Ε christchurch@aurecongroup.com
- W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard a) copy version. Using the documents or data for any purpose not agreed to in writing by Aurecon.
- b)

Document control durecon								
Repor	t Title	Qualitative Engineering Ev	Qualitative Engineering Evaluation					
Functional Location ID		PRK 0158 BLDG 003 EQ2	Project Numb	ber	228590			
File Pa	ath	P:\ 228590 - Bottle Lake Forest Park Meeting Room.docx						
Client		Christchurch City Council	Client Contac	;t	Michael Sheffield			
Rev	Date	Revision Details/Status	Prepared	Prepared Author		Approver		
1	4 May 2012	Draft	C. Bong	C. Bong	S.Manning	S. Manning		
2 21 December 2012		Final	C. Bong	C. Bong	L. Castillo	L. Castillo		
Currer	Current Revision 2							

Approval									
Author Signature	And Marken	Approver Signature	Alt						
Name	Chris Bong	Name	Luis Castillo						
Title	Structural Engineer	Title	Senior Structural Engineer						

Contents

Exe	cutive	e Summary	1
1	Intro	duction	2
	1.1	General	2
2	Desc	ription of the Building	2
	2.1	Building Age and Configuration	2
	2.2	Building Structural Systems Vertical and Horizontal	2
	2.3	Reference Building Type	2
	2.4	Building Foundation System and Soil Conditions	3
	2.5	Available Structural Documentation and Inspection Priorities	3
	2.6	Available Survey Information	3
3	Struc	ctural Investigation	3
	3.1	Summary of Building Damage	3
	3.2	Record of Intrusive Investigation	3
	3.3	Damage Discussion	3
4	Build	ling Review Summary	4
5	Build	ling Strength (Refer to Appendix C for background information)	4
6	Conc	lusions and Recommendations	4
7	Expla	anatory Statement	5

Appendices

Appendix A Photos and Level survey Appendix B References

Appendix C Strength Assessment Explanation

Appendix D Background and Legal Framework

Appendix E Standard Reporting Spread Sheet

Executive Summary

This is a summary of the Qualitative Engineering Evaluation for the Bottle Lake Forest Park Meeting Room building and is based on the Detailed Engineering Evaluation Procedure document issued by the Engineering Advisory Group on 19 July 2011, visual inspections, available structural documentation and summary calculations as appropriate.

Building Details	Name	Bottle Lake Forest Park Meeting Room					
Building Location ID	PRK 0158	BLDG 003 EQ2			Multipl	e Building Site	Y
Building Address	70 Waitikiri	Drive			No. of	residential units	0
Soil Technical Category	TC2	Importance Level	Importance Level 2 Approximate Year Built				1977
Foot Print (m ²)	50	Storeys above ground 1 Storeys below ground 0					
Type of Construction	of Construction Vertical board and batten timber structure founded on a concrete slab on grade cast to ground level, lightweight timber purlins and rafters						ade cast
Qualitative L4 Report Results Summary							
Building Occupied	Y	Currently used as a	meeting	room.			
Suitable for Continued Occupancy	Y	Suitable for continued use.					
Key Damage Summary	Y	Refer to summary of building damage Section 3.1 report body.					
Critical Structural Weaknesses (CSW)	N	No critical structural	weaknes	sses were for	und.		
Levels Survey Results	Y	A levels survey wa	as under	taken.			
Building %NBS From Analysis	>100%	Based on specific a	nalysis us	sing assume	d approxi	mate material strengt	hs.
Qualitative L4 Report	rt Recom	mendations					
Geotechnical Survey Required	N	Uncategorised, Te	echnical	Category 2	by extra	apolation.	
Proceed to L5 Quantitative DEE	N	A quantitative DEE is not required for this structure.					
Approval							
Author Signature	le	hund for g		pprover Sig	jnature	Ait	
Name	Christoph	er Bong			Name	Luis Castillo	

Structural Engineer

Title

р1

1 Introduction

1.1 General

On 12 March 2012, Aurecon engineers visited the Bottle Lake Forest Park Meeting Room to carry out a qualitative building damage assessment on behalf of Christchurch City Council. Detailed visual inspections were carried out to assess the damage caused by the earthquakes on 4 September 2010, 22 February 2011, 13 June 2011, 23 December 2011 and their subsequent aftershocks.

The scope of work included:

- Assessment of the nature and extent of the building damage.
- Visual assessment of the building strength particularly with respect to safety of occupants if the building is currently occupied.

This report outlines the results of our qualitative assessment of damage to the Bottle Lake Forest Park Meeting Room and is based on the Detailed Engineering Evaluation Procedure document issued by the Structural Advisory Group on 19 July 2011, visual inspections, available structural documentation and summary calculations as appropriate.

2 Description of the Building

2.1 Building Age and Configuration

The Bottle Lake Forest Park Meeting Room is a small, single storey, open plan, vertical board and batten timber structure founded on a concrete slab on grade cast to ground level. The corrugated iron roof is supported on lightweight timber purlins and rafters.

The approximate floor area of the meeting room is 50 square metres and is classified as a building with an importance level of 2 according to NZS 1170 Part 0: 2002.

2.2 Building Structural Systems Vertical and Horizontal

Tracing the loads from top to bottom vertical loads originate from the corrugated iron roof and are supported by the lightweight timber purlins on rafters which, in turn, rest on the corresponding load bearing board and batten timber framed wall.

The lateral loads originate from both the roof structure and the board and batten timber wall. These loads are transferred by the roof diaphragm to the board and batten timber framed walls and by the walls into the building foundations.

2.3 Reference Building Type

The reference building type for this structure is a light weight, single story, timber framed structure with a concrete pad – slab on grade foundation. This is a type of structure that due to its light weight, flexibility and natural ductility has proven to be robust during the Canterbury Earthquakes.

2.4 Building Foundation System and Soil Conditions

The meeting room is founded on a concrete slab on grade cast at ground level. No drawings were available and no intrusive foundation investigations were carried out.

CERA land zone maps indicate that Bottle Lake Forest Park currently sits on "Yet To be Classified Rural & Unmapped Land", however the land to the immediate south has classed as Technical Category 2 Land. By extrapolation, the land is deemed also potentially subject to liquefaction or settlement in any future large earthquakes. The site inspection has shown no obvious ground disturbance or movement have been noted in the immediate vicinity of the meeting room.

2.5 Available Structural Documentation and Inspection Priorities

The building drawings were unavailable for review. This report is based solely on the exterior only visual inspection which was undertaken on 12 March 2012.

2.6 Available Survey Information

A floor level survey was undertaken to establish the level of unevenness across the floors. The results of the survey are presented on the attached sketch in Appendix A. All of the levels were taken on top of the existing floor coverings which may have introduced some margin of error.

The levels survey shows that existing floor levels are within acceptable limits.

3 Structural Investigation

3.1 Summary of Building Damage

The interior of the meeting room was inaccessible at the time of the damage assessment and an exterior only visual inspection was undertaken. The standard of finish on the building exterior can be considered moderate to rough and unlikely to show minor deformation cracks. No obvious signs of damage to the building were observed when the visual inspection was undertaken on 12 March 2012.

3.2 Record of Intrusive Investigation

Due to the lack of evidence of significant damage it was determined that no intrusive investigation was required.

3.3 Damage Discussion

The Bottle Lake Forest Park Meeting Room has suffered little to no damage as a result of recent seismic activity. This is likely due to the fact that this type of timber building is inherently flexible and ductile and the fact that the relatively rough finish is unlikely to show minor damage.

4 Building Review Summary

Not all of the structural components for this building were assessable. As such, the visual inspection focused primarily on the damage to the non-structural linings and trimming as key indicators of displacement damage.

The observed displacement damage for this building was found to be minor implying a commensurate degree of damage to the corresponding structural elements.

5 Building Strength (Refer to Appendix C for background information)

Because the Bottle Lake Forest Park Meeting Room is not an optimised engineered structure that was subject to specific engineering design the initial engineering procedure or IEP is not an appropriate method of initial assessment. The approach taken to determine the approximate seismic capacity of this structure was to calculate demand from first principles and then estimate capacity by assuming approximate strengths for existing materials. The size of existing load resisting elements, walls, in each direction was measured and from this an approximate capacity was calculated.

This analysis has resulted in an estimated capacity well in excess of calculated demand. Accordingly the Bottle Lake Forest Park Meeting Room is considered to have an estimated percentage new building strength of at least 100%NBS.

6 Conclusions and Recommendations

The absence of obvious visible damage to this structure tends to confirm the assessment that this structure has sufficient seismic capacity and does not require strengthening.

7 Explanatory Statement

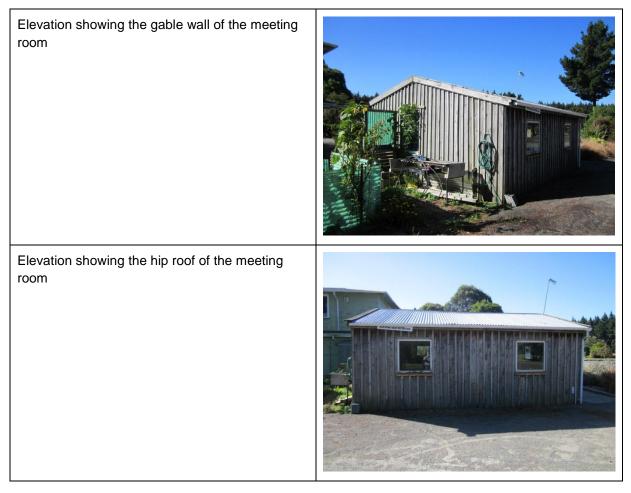
The inspections of the building discussed in this report have been undertaken to assess structural earthquake damage. No analysis has been undertaken to assess the strength of the building or to determine whether or not it complies with the relevant building codes, except to the extent that Aurecon expressly indicates otherwise in the report. Aurecon has not made any assessment of structural stability or building safety in connection with future aftershocks or earthquakes – which have the potential to damage the building and to jeopardise the safety of those either inside or adjacent to the building, except to the extent that Aurecon expressly indicates otherwise in the report.

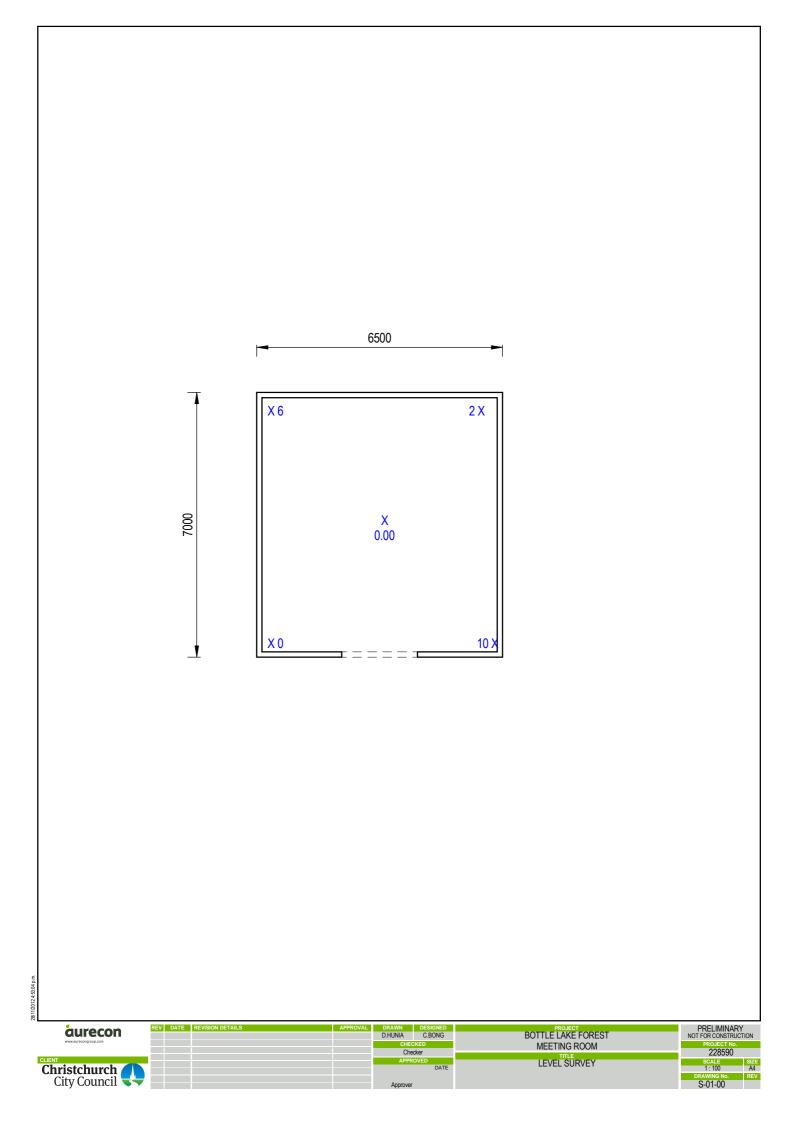
This report is necessarily limited by the restricted ability to carry out inspections due to potential structural instabilities/safety considerations, and the time available to carry out such inspections. The report does not address defects that are not reasonably discoverable on visual inspection, including defects in inaccessible places and latent defects. Where site inspections were made, they were restricted to external inspections and, where practicable, limited internal visual inspections.

To carry out the structural review, existing building drawings were obtained (where available) from the Christchurch City Council records. We have assumed that the building has been constructed in accordance with the drawings.

While this report may assist the client in assessing whether the building should be repaired, strengthened, or replaced that decision is the sole responsibility of the client.

This review has been prepared by Aurecon at the request of its client and is exclusively for the client's use. It is not possible to make a proper assessment of this review without a clear understanding of the terms of engagement under which it has been prepared, including the scope of the instructions and directions given to and the assumptions made by Aurecon. The report will not address issues which would need to be considered for another party if that party's particular circumstances, requirements and experience were known and, further, may make assumptions about matters of which a third party is not aware. No responsibility or liability to any third party is accepted for any loss or damage whatsoever arising out of the use of or reliance on this report by any third party.


Without limiting any of the above, Aurecon's liability, whether under the law of contract, tort, statute, equity or otherwise, is limited as set out in the terms of the engagement with the client.


Appendices

Appendix A Photos and Level survey

13 January 2012 – Bottle Lake Forest Park Meeting Room Site Photographs

Appendix B References

- Department of Building and Housing (DBH), "Revised Guidance on Repairing and Rebuilding 1. Houses Affected by the Canterbury Earthquake Sequence", November 2011
- 2. New Zealand Society for Earthquake Engineering (NZSEE), "Assessment and Improvement of the Structural Performance of Buildings in Earthquakes", April 2012
- 3. Standards New Zealand, "AS/NZS 1170 Part 0, Structural Design Actions: General Principles", 2002
- 4. Standards New Zealand, "AS/NZS 1170 Part 1, Structural Design Actions: Permanent, imposed and other actions", 2002
- 5. Standards New Zealand, "NZS 1170 Part 5, Structural Design Actions: Earthquake Actions - New Zealand", 2004
- 6. Standards New Zealand, "NZS 3101 Part 1, The Design of Concrete Structures", 2006
- 7. Standards New Zealand, "NZS 3404 Part 1, Steel Structures Standard", 1997
- 8. Standards New Zealand, "NZS 3603, Timber Structures Standard", 1993
- 9. Standards New Zealand, "NZS 3604, Timber Framed Structures", 2011
- 10. Standards New Zealand, "NZS 4229, Concrete Masonry Buildings Not Requiring Specific Engineering Design", 1999
- 11. Standards New Zealand, "NZS 4230, Design of Reinforced Concrete Masonry Structures", 2004

Appendix C Strength Assessment Explanation

New building standard (NBS)

New building standard (NBS) is the term used with reference to the earthquake standard that would apply to a new building of similar type and use if the building was designed to meet the latest design Codes of Practice. If the strength of a building is less than this level, then its strength is expressed as a percentage of NBS.

Earthquake Prone Buildings

A building can be considered to be earthquake prone if its strength is less than one third of the strength to which an equivalent new building would be designed, that is, less than 33%NBS (as defined by the New Zealand Building Act). If the building strength exceeds 33%NBS but is less than 67%NBS the building is considered at risk.

Christchurch City Council Earthquake Prone Building Policy 2010

The Christchurch City Council (CCC) already had in place an Earthquake Prone Building Policy (EPB Policy) requiring all earthquake-prone buildings to be strengthened within a timeframe varying from 15 to 30 years. The level to which the buildings were required to be strengthened was 33%NBS.

As a result of the 4 September 2010 Canterbury earthquake the CCC raised the level that a building was required to be strengthened to from 33% to 67% NBS but qualified this as a target level and noted that the actual strengthening level for each building will be determined in conjunction with the owners on a building-bybuilding basis. Factors that will be taken into account by the Council in determining the strengthening level include the cost of strengthening, the use to which the building is put, the level of danger posed by the building, and the extent of damage and repair involved.

Irrespective of strengthening level, the threshold level that triggers a requirement to strengthen is 33%NBS.

As part of any building consent application fire and disabled access provisions will need to be assessed.

Christchurch Seismicity

The level of seismicity within the current New Zealand loading code (AS/NZS 1170) is related to the seismic zone factor. The zone factor varies depending on the location of the building within NZ. Prior to the 22nd February 2011 earthquake the zone factor for Christchurch was 0.22. Following the earthquake the seismic zone factor (level of seismicity) in the Christchurch and surrounding areas has been increased to 0.3. This is a 36% increase.

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The new building standard load requirements have been determined in accordance with the current earthquake loading standard (NZS 1170.5:2004 Structural design actions - Earthquake actions - New Zealand).

The likely capacity of this building has been derived in accordance with the New Zealand Society for Earthquake Engineering (NZSEE) guidelines 'Assessment and Improvement of the Structural Performance of Buildings in Earthquakes' (AISPBE), 2006. These guidelines provide an Initial Evaluation Procedure that assesses a buildings capacity based on a comparison of loading codes from when the building was designed

228590 - Bottle Lake Forest Park Meeting Room.docx | 21 December 2012 | Revision Leading. Vibrant. Global. and currently. It is a quick high-level procedure that can be used when undertaking a Qualitative analysis of a building. The guidelines also provide guidance on calculating a modified Ultimate Limit State capacity of the building which is much more accurate and can be used when undertaking a Quantitative analysis.

The New Zealand Society for Earthquake Engineering has proposed a way for classifying earthquake risk for existing buildings in terms of %NBS and this is shown in Figure C1 below.

Description	Grade	Risk	%NBS	Existing Building Structural Performance		Improvement of Structural Performance	
					_►	Legal Requirement	NZSEE Recommendation
Low Risk Building	A or B	Low	Above 67	Acceptable (improvement may be desirable)		The Building Act sets no required level of structural improvement (unless change in use)	100%NBS desirable. Improvement should achieve at least 67%NBS
Moderate Risk Building	B or C	Moderate	34 to 66	Acceptable legally. Improvement recommended		decide. Improvement is not limited to 34%NBS.	Not recommended. Acceptable only in exceptional circumstances
High Risk Building	D or E	High	33 or Iower	Unacceptable (Improvement		Unacceptable	Unacceptable

Table C1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% probability of exceedance in 50 years (i.e. 0.2% in the next year). It is noted that the current seismic risk in Christchurch results in a 6% probability of exceedance in the next year.

Percentage of New Building Standard (%NBS)	Relative Risk (Approximate)		
>100	<1 time		
80-100	1-2 times		
67-80	2-5 times		
33-67	5-10 times		
20-33	10-25 times		
<20	>25 times		

Table C1: Relative Risk of Building Failure In A

Appendix D Background and Legal Framework

Background

Aurecon has been engaged by the Christchurch City Council (CCC) to undertake a detailed engineering evaluation of the building

This report is a Qualitative Assessment of the building structure, and is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011.

A qualitative assessment involves inspections of the building and a desktop review of existing structural and geotechnical information, including existing drawings and calculations, if available.

The purpose of the assessment is to determine the likely building performance and damage patterns, to identify any potential critical structural weaknesses or collapse hazards, and to make an initial assessment of the likely building strength in terms of percentage of new building standard (%NBS).

Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 – Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 – Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee carry out a full structural survey before the building is re-occupied.

We understand that CERA will require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). It is anticipated that CERA will adopt the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. This document sets out a methodology for both qualitative and quantitative assessments.

The qualitative assessment is a desk-top and site inspection assessment. It is based on a thorough visual inspection of the building coupled with a review of available documentation such as drawings and specifications. The quantitative assessment involves analytical calculation of the buildings strength and may require non-destructive or destructive material testing, geotechnical testing and intrusive investigation.

228590 - Bottle Lake Forest Park Meeting Room.docx | 21 December 2012 | Revision

It is anticipated that factors determining the extent of evaluation and strengthening level required will include:

- The importance level and occupancy of the building
- The placard status and amount of damage
- The age and structural type of the building
- Consideration of any critical structural weaknesses
- The extent of any earthquake damage

Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 – Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to any alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 – Change of Use

This section requires that the territorial authority (in this case Christchurch City Council (CCC)) be satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'. Regarding seismic capacity 'as near as reasonably practicable' has previously been interpreted by CCC as achieving a minimum of 67%NBS however where practical achieving 100%NBS is desirable. The New Zealand Society for Earthquake Engineering (NZSEE) recommend a minimum of 67%NBS.

Section 121 – Dangerous Buildings

The definition of dangerous building in the Act was extended by the Canterbury Earthquake (Building Act) Order 2010, and it now defines a building as dangerous if:

- in the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- in the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- there is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- there is a risk that that other property could collapse or otherwise cause injury or death; or
- a territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 – Earthquake Prone Buildings

This section defines a building as earthquake prone if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property. A moderate earthquake is defined by the building regulations as one that would generate ground shaking 33% of the shaking used to design an equivalent new building.

Leading. Vibrant. Global.

Section 124 – Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 – Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake of the 4th September 2010.

The 2010 amendment includes the following:

- A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;
- A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

We anticipate that any building with a capacity of less than 33%NBS (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67%NBS of new building standard as recommended by the Policy.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

Building Code

The building code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

After the February Earthquake, on 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- Hazard Factor increased from 0.22 to 0.3 (36% increase in the basic seismic design load)
- Serviceability Return Period Factor increased from 0.25 to 0.33 (80% increase in the serviceability design loads when combined with the Hazard Factor increase)

The increase in the above factors has resulted in a reduction in the level of compliance of an existing building relative to a new building despite the capacity of the existing building not changing.

2

Appendix E Standard Reporting Spread Sheet

Detailed Engineering Evaluation Summary Data

Location			
Building Name: Meeting Room		Reviewer	Simon Manning
	Jnit No: Street	CPEng No:	
Building Address: Bottle Lake Forest	Waitikiri Drive	Company	
Legal Description: RS 26529		Company project number	
		Company phone number	
Dear	ees Min Sec	eenipaily priorie ramber	
GPS south:	43 28 8.22	Date of submission	April
	172 40 52.06	Inspection Date	
Gi O dast.	112 40 32.00	Revision	
Building Unique Identifier (CCC) PRK 0158 BLDG 003 EQ2	-	Is there a full report with this summary	
Building Onique Identifier (CCC) [FKK 0138 BEDS 003 Edz		is there a full report with this sufficiency	lyes
Site			
Site slope: flat		Max retaining height (m)	
Soil type: mixed		Soil Profile (if available)	
Site Class (to NZS1170.5): D			
Proximity to waterway (m, if <100m):		If Ground improvement on site, describe	
Proximity to clifftop (m, if < 100m):			
Proximity to cliff base (m,if <100m):		Approx site elevation (m)	3.30
Building			
No. of storeys above ground:	1 single storey = 1	Ground floor elevation (Absolute) (m)	3.45
Ground floor split? no		Ground floor elevation above ground (m)	0.15
Storeys below ground		σ (,	
Foundation type: raft slab		if Foundation type is other, describe	Concrete slab on grade
	.10 height from ground to level of	uppermost seismic mass (for IEP only) (m)	
Floor footprint area (approx):	50		
Age of Building (years):	50	Date of design	1965-1976
Age of Durany (years).	30	Date of design	1303 1370
Strongthening present/		If so, when (year)?	
Strengthening present?no			
		And what load level (%g)?	
Use (ground floor): other (specify)		Brief strengthening description	
Use (upper floors):			
Use notes (if required): meeting building for park staff			
Importance level (to NZS1170.5): IL2			
Gravity Structure			
Gravity System: load bearing walls			
Roof: timber framed		rafter type, purlin type and cladding	timber framed roof with metal cladding
Floors: concrete flat slab		slab thickness (mm)	100mm
Beams: none		overall depth x width (mm x mm)	
Columns: load bearing walls		typical dimensions (mm x mm)	
Walls:			
			••
Lateral load resisting structure			
Lateral system along: lightweight timber framed walls	Note: Define along and across in	n note typical wall length (m	
	.00 detailed report!	n noto typical nali iongli (in	
	.40 0.00	estimate or calculation?	estimated
Total deflection (ULS) (mm):		estimate or calculation?	
maximum interstorey deflection (ULS) (mm):		estimate or calculation?	
		estimate or calculations	ootimatou
Lateral quatern personal light weight timber from a two lie		noto tunical wall for atta (m	
Lateral system across: lightweight timber framed walls	- 00	note typical wall length (m	9
	.00	and a second	
	.40 0.00	estimate or calculation?	
Total deflection (ULS) (mm):		estimate or calculation?	
maximum interstorey deflection (ULS) (mm):		estimate or calculation?	estimated
Separations:			
north (mm):	leave blank if not relevant		

V1.11

-			
	east (mm): south (mm): west (mm):		
Non-structural elements	Stairs: Wall cladding: Roof Cladding: Glazing: Ceilings: Services(list):	none	
Available documentati			
	Architectural Structural Mechanical Electrical Geotech report	none none none	original designer name/date original designer name/date original designer name/date original designer name/date original designer name/date
Damage			
Site: (refer DEE Table 4-2)	Site performance:		Describe damage: minor - none
	Differential settlement:	none apparent	notes (if applicable): notes (if applicable): notes (if applicable): notes (if applicable):
	Differential lateral spread: Ground cracks: Damage to area:	none apparent none apparent	notes (if applicable): notes (if applicable): notes (if applicable):
			······
Building:	Current Placard Status:	green]
Along	Damage ratio: Describe (summary):	0%	
Across	Damage ratio: Describe (summary):	0%	$Damage _Ratio = \frac{(\% NBS (before) - \% NBS (after))}{\% NBS (before)}$
Diaphragms	Damage?:		Describe:
CSWs:	Damage?:		Describe:
Pounding: Non-structural:	Damage?: Damage?:		Describe:
Non-Structural.	Damage :.		
Recommendations	evel of repair/strengthening required:	none	Describe:
Bu	ilding Consent required terim occupancy recommendations:	no	Describe: Describe:
	sessed %NBS before: sessed %NBS after:	100%	0% %NBS from IEP below If IEP not used, please detail assessment methodology:
	sessed %NBS before: sessed %NBS after:	100%	
IEP	Use of this met	thod is not mandatory - more detailed ar	nalysis may give a different answer, which would take precedence. Do not fill in fields if not using IEP.

Period of design of building (from above): 1965-1976		h₀ from abov	e: 3.1m	
Seismic Zone, if designed between 1965 and 1992 B		not required for this age of buildi not required for this age of buildi		
		not required for this age of build	ng	
		along		across
	Period (from above): (%NBS)nom from Fig 3.3:	0.4 0.0%		0.4
Note:1 for specifically design public buildings, to the code of the day:	pre-1965 = 1.25; 1965-1976. Zone A =1.3	3: 1965-1976. Zone B = 1.2: all else	1.(1.20
	Note 2: for RC buildings	designed between 1976-1984, use 1	.2	1.0
	Note 3: for buildngs designed prior to 1	1935 use 0.8, except in Wellington (1.	0)	1.0
	_	along		across
	Final (%NBS)nom:	0%		0%
2.2 Near Fault Scaling Factor	Near Fault s	caling factor, from NZS1170.5, cl 3.1	.6:	1.00
		along		across
Near f	Fault scaling factor (1/N(T,D), Factor A:	1		1
2.3 Hazard Scaling Factor	Hazard fac	tor Z for site from AS1170.5, Table 3.		0.30
		Z ₁₉₉₂ , from NZS4203:199 Hazard scaling factor, Factor		333333333
		riazard scaling factor, ractor	J. <u> </u>	
2.4 Return Period Scaling Factor		Building Importance level (from above	e):	2
		Scaling factor from Table 3.1, Factor		1.00
2.5 Ductility Scaling Factor Assess	sed ductility (less than max in Table 3.2)	along 2.00		across 2.00
Ductility scaling factor: =1 from 1976 onw		2.00		2.00
	Ductiity Scaling Factor, Factor D:	2.00		2.00
2.6 Structural Performance Scaling Factor:	Sp:			0.700
Structura	al Performance Scaling Factor Factor E:	1.428571429	1.	428571429
2.7 Baseline %NBS, (NBS%)₀ = (%NBS)nom x A x B x C x D x E	%NBS6:	0%		0%
	////056.	078		0 %
Global Critical Structural Weaknesses: (refer to NZSEE IEP Table 3.4)				
3.1. Plan Irregularity, factor A: insignificant 1				
3.2. Vertical irregularity, Factor B: insignificant 1				
3.3. Short columns, Factor C: insignificant 1	Table for selection of D1	Severe	Significant	Insignificant/none
			.005 <sep<.01h< td=""><td>Sep>.01H</td></sep<.01h<>	Sep>.01H
3.4. Pounding potential Pounding effect D1, from Table to right 1. Height Difference effect D2, from Table to right 1.			0.8	1
	Alignment of floors not within	20% of H 0.4	0.7	0.8
Therefore, Factor D:	Table for Selection of D2	Severe	Significant	Insignificant/none
3.5. Site Characteristics insignificant 1	S	Separation 0 <sep<.005h< td=""><td>.005<sep<.01h< td=""><td>Sep>.01H</td></sep<.01h<></td></sep<.005h<>	.005 <sep<.01h< td=""><td>Sep>.01H</td></sep<.01h<>	Sep>.01H
nogmoun	Height difference >	4 storeys 0.4	0.7	1
	Height difference 2 to	4 storeys 0.7	0.9	1
	Height difference <	2 storeys 1	1	1
		Along		Across
3.6. Other factors, Factor F For \leq 3 storeys, max value =2.5,	otherwise max valule =1.5, no minimum	1.0		1.0
	Rationale for choice of F factor, if not 1			

Detail Critical Structural Weaknesses: (refer to DEE Procedure section 6) List any:	Refer also section 6.3.1 of DEE for discussion of F factor	or modification for other	r critical structural weaknesses
3.7. Overall Performance Achievement ratio (PAR)		1.00	1.00
4.3 PAR x (%NBS)b: 4.4 Percentage New Building Standard (%NBS), (before)	PAR x Baselline %NBS:	0%	0%

aurecon

Aurecon New Zealand Limited Level 2, 518 Colombo Street Christchurch 8011

PO Box 1061 Christchurch 8140 New Zealand

T +64 3 375 0761
F +64 3 379 6955
E christchurch@aurecongroup.com
W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ethiopia, Hong Kong, Indonesia, Lesotho, Libya, Malawi, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.